电路连接:SCL和SDA分别接到PB6和PB7上,并都外接上10kΩ上拉电阻

电路板如下图所示:

Stm32f103读写emmc_Stm32f103读写emmc

最左边的4个排针接的是电源和串口。


由于板上没有任何外部晶振,所以在Keil中建好工程后, 要将RTE/Device/STM32F103C8/system_stm32f10x.c中的SYSCLK_FREQ_72MHz的定义注释掉,防止SystemInit函数打开HSE晶振。

#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* #define SYSCLK_FREQ_HSE    HSE_VALUE */
 #define SYSCLK_FREQ_24MHz  24000000
#else
/* #define SYSCLK_FREQ_HSE    HSE_VALUE */
/* #define SYSCLK_FREQ_24MHz  24000000 */ 
/* #define SYSCLK_FREQ_36MHz  36000000 */
/* #define SYSCLK_FREQ_48MHz  48000000 */
/* #define SYSCLK_FREQ_56MHz  56000000 */
/* #define SYSCLK_FREQ_72MHz  72000000 */
#endif

板子有两种程序下载方式。一种是通过J-Link仿真器,在Keil中下载。另一种是按下板上的白色开关,将BOOT0拉高(BOOT1=PB2必须通过10kΩ的电阻接地),然后用STMicroelectronics的FlashLoader通过串口1下载编译好的hex文件。

板上LED灯串联的电阻是500Ω左右(由两个1kΩ的电阻并联而成),接到了PA8上,高电平点亮,本实验中没有用到。

复位电路所用的电容是0.1μF 50V的电解电容(104),是51/AVR的单片机所用的10μF的1%。

【程序1:普通方式】

#include <stdio.h>
#include <stm32f10x.h>

int fputc(int ch, FILE *fp)
{
	if (fp == stdout)
	{
		if (ch == '\n')
		{
			while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
			USART_SendData(USART1, '\r');
		}
		while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
		USART_SendData(USART1, ch);
	}
	return ch;
}

// 发送开始信号和从机地址(传输模式)
void start(void)
{
	if (I2C1->SR1 || I2C1->SR2)
		printf("error!\n");
	
restart:
	I2C_GenerateSTART(I2C1, ENABLE);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT) == ERROR); // 等待开始信号发送完毕
	I2C_SendData(I2C1, 0xa0); // 从机地址(传输模式)
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) == ERROR) // 等待从机确认
	{
		if (I2C_GetFlagStatus(I2C1, I2C_FLAG_AF) == SET)
		{
			// 若从机未响应, 则重试
			// 执行了写操作后需要等待一段时间才能执行其他命令
			I2C_ClearFlag(I2C1, I2C_FLAG_AF);
			//printf("NACK!\n");
			goto restart;
		}
	}
}

uint8_t read(uint8_t addr)
{
	start();
	I2C_SendData(I2C1, addr); // 发送存储器地址
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR);
	
	I2C_GenerateSTART(I2C1, ENABLE); // RESTART
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT) == ERROR);
	I2C_SendData(I2C1, 0xa1); // 从机地址(接收模式)
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) == ERROR);
	
	I2C_GenerateSTOP(I2C1,ENABLE); // 接收最后一字节数据前先准备好STOP信号
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED) == ERROR); // 等待数据接收完毕
	while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY) == SET); // 等待停止信号发送完毕
	return I2C_ReceiveData(I2C1);
}

void write(uint8_t addr, uint8_t value)
{
	start();
	I2C_SendData(I2C1, addr); // 前两个数据可连发, 无需等待TXE置位
	I2C_SendData(I2C1, value);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR); // 等待数据完全发送完毕
	I2C_GenerateSTOP(I2C1,ENABLE);
	while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY) == SET); // 等待停止信号发送完毕
}

void read_more(uint8_t addr, char *data, uint8_t len)
{
	start();
	I2C_SendData(I2C1, addr);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR);
	
	I2C_GenerateSTART(I2C1, ENABLE);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT) == ERROR);
	I2C_SendData(I2C1, 0xa1);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) == ERROR);
	
	I2C_AcknowledgeConfig(I2C1, ENABLE);
	while (len--)
	{
		if (len == 0)
		{
			I2C_AcknowledgeConfig(I2C1, DISABLE);
			I2C_GenerateSTOP(I2C1,ENABLE); // 接收最后一字节数据前先准备好STOP信号
		}
		while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED) == ERROR); // 等待当前数据接收完毕
		*data++ = I2C_ReceiveData(I2C1);
	}
	while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY) == SET); // 等待停止信号发送完毕
}

void write_more(uint8_t addr, const char *data, uint8_t len) 
{
	start();
	I2C_SendData(I2C1, addr);
	while (len--)
	{
		I2C_SendData(I2C1, *data++);
		while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING) == ERROR); // 等待TXE
	}
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR); // 等待全部数据发送完毕
	I2C_GenerateSTOP(I2C1,ENABLE);
	while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY) == SET); // 等待停止信号发送完毕
}

int main(void)
{
	char str[20];
	GPIO_InitTypeDef gpio;
	I2C_InitTypeDef i2c;
	USART_InitTypeDef usart;
	
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_USART1, ENABLE);
	
	// 串口发送引脚设为复用推挽输出
	gpio.GPIO_Mode = GPIO_Mode_AF_PP;
	gpio.GPIO_Pin = GPIO_Pin_9;
	gpio.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &gpio);
	
	// I2C引脚设为复用开漏输出
	gpio.GPIO_Mode = GPIO_Mode_AF_OD;
	gpio.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
	GPIO_Init(GPIOB, &gpio);
	
	USART_StructInit(&usart);
	usart.USART_BaudRate = 115200;
	usart.USART_Mode = USART_Mode_Tx;
	USART_Init(USART1, &usart);
	USART_Cmd(USART1, ENABLE);
	
	I2C_StructInit(&i2c);
	i2c.I2C_ClockSpeed = 100000;
	I2C_Init(I2C1, &i2c);
	I2C_Cmd(I2C1, ENABLE);
	
	write(17, 0x31);
	printf("read: 0x%02x\n", read(17));
	
	write_more(17, "Hello!", 7); // 区域16~23
	read_more(17, str, sizeof(str));
	printf("str: %s\n", str);
	
	write_more(8, "12345678ABCDEFG", 16); // 先将前8个字符写入地址8~15处, 然后回到地址8处写入剩下的字符, 包括最后的\0
	read_more(8, str, sizeof(str));
	printf("str: %s\n", str);
	
	printf("I2C1->SR1=0x%04x, I2C1->SR2=0x%04x\n", I2C_ReadRegister(I2C1, I2C_Register_SR1), I2C_ReadRegister(I2C1, I2C_Register_SR2));
	while (1)
		__WFI();
}

【程序运行结果1】


read: 0x31
str: Hello!
str: ABCDEFG
I2C1->SR1=0x0000, I2C1->SR2=0x0000

两个SR寄存器的值都为0表明I2C正常工作。


【程序2:DMA方式】

#include <stdio.h>
#include <stm32f10x.h>

DMA_InitTypeDef dma;

#define WRITE

#ifdef WRITE
const char eep_data[] = "The SDIO does not have an SPI-compatible communication mode. The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the MultiMediaCard system specification V2.11. Several commands required for SD memory devices are not supported by either SD I/O-only cards or the I/O portion of combo cards.";
#endif

int fputc(int ch, FILE *fp)
{
	if (fp == stdout)
	{
		if (ch == '\n')
		{
			while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
			USART_SendData(USART1, '\r');
		}
		while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
		USART_SendData(USART1, ch);
	}
	return ch;
}

// 发送开始信号和从机地址(传输模式)
void start(void)
{
	if (I2C1->SR1 || I2C1->SR2)
		printf("error!\n");
	
restart:
	I2C_GenerateSTART(I2C1, ENABLE);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT) == ERROR); // 等待开始信号发送完毕
	I2C_SendData(I2C1, 0xa0); // 从机地址(传输模式)
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) == ERROR) // 等待从机确认
	{
		if (I2C_GetFlagStatus(I2C1, I2C_FLAG_AF) == SET)
		{
			// 若从机未响应, 则重试
			// 执行了写操作后需要等待一段时间才能执行其他命令
			I2C_ClearFlag(I2C1, I2C_FLAG_AF);
			//printf("NACK!\n");
			goto restart;
		}
	}
}

void read(uint8_t addr, char *data, uint16_t len)
{
	dma.DMA_BufferSize = len;
	dma.DMA_DIR = DMA_DIR_PeripheralSRC;
	dma.DMA_MemoryBaseAddr = (uint32_t)data;
	DMA_Init(DMA1_Channel7, &dma);
	DMA_Cmd(DMA1_Channel7, ENABLE);
	
	start();
	I2C_SendData(I2C1, addr);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR);
	
	I2C_GenerateSTART(I2C1, ENABLE);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT) == ERROR);
	I2C_SendData(I2C1, 0xa1);
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) == ERROR);
	
	I2C_DMACmd(I2C1, ENABLE);
	I2C_DMALastTransferCmd(I2C1, ENABLE);
	I2C_AcknowledgeConfig(I2C1, ENABLE);
	
	while (DMA_GetFlagStatus(DMA1_FLAG_TC7) == RESET);
	DMA_ClearFlag(DMA1_FLAG_TC7);
	DMA_Cmd(DMA1_Channel7, DISABLE);
	I2C_GenerateSTOP(I2C1, ENABLE);
	
	I2C_DMACmd(I2C1, DISABLE);
	I2C_DMALastTransferCmd(I2C1, DISABLE);
	I2C_AcknowledgeConfig(I2C1, DISABLE);
	while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY) == SET);
}

void write(uint8_t addr, const char *data, uint8_t len) 
{
	dma.DMA_BufferSize = len;
	dma.DMA_DIR = DMA_DIR_PeripheralDST;
	dma.DMA_MemoryBaseAddr = (uint32_t)data;
	DMA_Init(DMA1_Channel6, &dma);
	DMA_Cmd(DMA1_Channel6, ENABLE);
	
	start();
	I2C_SendData(I2C1, addr);
	
	I2C_DMACmd(I2C1, ENABLE);
	while (DMA_GetFlagStatus(DMA1_FLAG_TC6) == RESET);
	DMA_ClearFlag(DMA1_FLAG_TC6);
	DMA_Cmd(DMA1_Channel6, DISABLE);
	
	while (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR); // 等待全部数据发送完毕
	I2C_GenerateSTOP(I2C1, ENABLE);
	I2C_DMACmd(I2C1, DISABLE);
	while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY) == SET);
}

#ifdef WRITE
void write_all(void)
{
	uint16_t i;
	for (i = 0; i < 256; i += 8)
		write(i, eep_data + i, 8);
}
#endif

int main(void)
{
	char str[257];
	GPIO_InitTypeDef gpio;
	I2C_InitTypeDef i2c;
	USART_InitTypeDef usart;
	
	RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_USART1, ENABLE);
	
	// 串口发送引脚设为复用推挽输出
	gpio.GPIO_Mode = GPIO_Mode_AF_PP;
	gpio.GPIO_Pin = GPIO_Pin_9;
	gpio.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &gpio);
	
	USART_StructInit(&usart);
	usart.USART_BaudRate = 115200;
	usart.USART_Mode = USART_Mode_Tx;
	USART_Init(USART1, &usart);
	USART_Cmd(USART1, ENABLE);
	
	// I2C引脚复位
	gpio.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	gpio.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
	GPIO_Init(GPIOB, &gpio);
	if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_6) == Bit_RESET || GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7) == Bit_RESET)
	{
		printf("I2C reset!\n");
		gpio.GPIO_Mode = GPIO_Mode_Out_OD;
		GPIO_Init(GPIOB, &gpio);
		GPIO_WriteBit(GPIOB, GPIO_Pin_6, Bit_SET);
		GPIO_WriteBit(GPIOB, GPIO_Pin_7, Bit_SET);
	}
	
	// I2C引脚设为复用开漏输出
	gpio.GPIO_Mode = GPIO_Mode_AF_OD;
	GPIO_Init(GPIOB, &gpio);
	
	I2C_StructInit(&i2c);
	i2c.I2C_ClockSpeed = 100000;
	I2C_Init(I2C1, &i2c);
	I2C_Cmd(I2C1, ENABLE);
	
	dma.DMA_M2M = DMA_M2M_Disable;
	dma.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
	dma.DMA_MemoryInc = DMA_MemoryInc_Enable;
	dma.DMA_Mode = DMA_Mode_Normal;
	dma.DMA_PeripheralBaseAddr = (uint32_t)&I2C1->DR;
	dma.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
	dma.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
	dma.DMA_Priority = DMA_Priority_High;
	
#ifdef WRITE
	write_all();
#endif
	read(0, str, 256);
	str[256] = '\0';
	printf("%s\n", str);
	
	printf("I2C1->SR1=0x%04x, I2C1->SR2=0x%04x\n", I2C_ReadRegister(I2C1, I2C_Register_SR1), I2C_ReadRegister(I2C1, I2C_Register_SR2));
	while (1)
		__WFI();
}

【程序运行结果2】


The SDIO does not have an SPI-compatible communication mode. The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the MultiMediaCard system specification V2.11. Several commands required for SD memory devices are not suppo
I2C1->SR1=0x0000, I2C1->SR2=0x0000