背景:

最近在设计一个公司的智能客服系统,通过对现有人工客服语料作为样本,通过训练样本完成整个QA过程或业务办理过程。

整体思路

java客服系统交互设计 客服系统架构设计_智能客服

  • AliceBot负责闲聊,这里用了开源的语料,也可以添加语料到DB,基于AIML。
  • AbilityBot主要负责公司业务上的咨询和办理,它提供了不同的能力接口,供外系统交互。
  • predict模块用于预测响应。
  • train模块用于训练客服对话样本。

语音转换

由第三方语音识别服务提供转换成文本,比如讯飞。

语义处理

由于机器本来是无法理解文本的含义的,如果要真正做到语义完整的解析理解需要涉及自然语言处理,工程庞大。可以换种思维,由于只是做某个特定行业的客服系统,并不是大而全的智能客服,所以可以通过VSM来匹配QA相关度,在给定的语料中这种匹配效果还是相当不错的。

分词

拿到文本后第一步需要分词,选择一个开源的中文分词器即可,分了词才能往下分析。

VSM

主要是匹配用户input和语料,VSM比较常见了,主要是通过词向量才计算文本相似性,它的公式如下

java客服系统交互设计 客服系统架构设计_智能客服_02

只要匹配最相近得分的即可。

上下文语义

要做到理解上下文语义就需要引入决策树或神经网络,这块还得结合后面北邮博士那边的思路。

demo

java客服系统交互设计 客服系统架构设计_语义_03