一、Namenode 和 Datanode
一个HDFS集群是由一个Namenode和一定数目的Datanodes组成。Namenode是一个中心服务器,负责管理文件系统的名字空间(namespace)以及客户端对文件的访问。集群中的Datanode一般是一个节点一个,负责管理它所在节点上的存储。HDFS暴露了文件系统的名字空间,用户能够以文件的形式在上面存储数据。从内部看,一个文件其实被分成一个或多个数据块,这些块存储在一组Datanode上。Namenode执行文件系统的名字空间操作,比如打开、关闭、重命名文件或目录。它也负责确定数据块到具体Datanode节点的映射。Datanode负责处理文件系统客户端的读写请求。在Namenode的统一调度下进行数据块的创建、删除和复制。
二、NameNode元数据管理原理分析
1.概述
首先明确namenode的职责:响应客户端请求、管理元数据。
namenode对元数据有三种存储方式:
内存元数据(NameSystem)
磁盘元数据镜像文件
数据操作日志文件(可通过日志运算出元数据)
细节:HDFS不适合存储小文件的原因,每个文件都会产生元信息,当小文件多了之后元信息也就多了,对namenode会造成压力。
2.checkpoint机制分析
1)namenode向secondarynamenode发送RPC请求,请求合并editslog到fsimage。
2)secondarynamenode收到请求后从namenode上读取(通过http服务)editslog(多个,滚动日志文件)和fsimage文件。
3)secondarynamenode会根据拿到的editslog合并到fsimage。形成最新的fsimage文件。(中间有很多步骤,把文件加载到内存,还原成元数据结构,合并,再生成文件,新生成的文件名为fsimage.checkpoint)。
4)secondarynamenode通过http服务把fsimage.checkpoint文件上传到namenode,并且通过RPC调用把文件改名为fsimage。
namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据。
三、客户端从HDFS中读数据的流程
1)客户端向namenode发起RPC调用,请求读取文件数据。
2)namenode检查文件是否存在,如果存在则获取文件的元信息(blockid以及对应的datanode列表)。
3)客户端收到元信息后选取一个网络距离最近的datanode,依次请求读取每个数据块。客户端首先要校检文件是否损坏,如果损坏,客户端会选取另外的datanode请求。
4)datanode与客户端简历socket连接,传输对应的数据块,客户端收到数据缓存到本地,之后写入文件。
5)依次传输剩下的数据块,直到整个文件合并完成。
四、客户端写数据到HDFS的流程
1)客户端向namenode发送上传文件请求,namenode对要上传目录和文件进行检查,判断是否可以上传,并向客户端返回检查结果。
2)客户端得到上传文件的允许后读取客户端配置,如果没有指定配置则会读取默认配置(例如副本数和块大小默认为3和128M,副本是由客户端决定的)。向namenode请求上传一个数据块。
3)namenode会根据客户端的配置来查询datanode信息,如果使用默认配置,那么最终结果会返回同一个机架的两个datanode和另一个机架的datanode。这称为“机架感知”策略。
4)客户端在开始传输数据块之前会把数据缓存在本地,当缓存大小超过了一个数据块的大小,客户端就会从namenode获取要上传的datanode列表。之后会在客户端和第一个datanode建立连接开始流式的传输数据,这个datanode会一小部分一小部分(4K)的接收数据然后写入本地仓库,同时会把这些数据传输到第二个datanode,第二个datanode也同样一小部分一小部分的接收数据并写入本地仓库,同时传输给第三个datanode,依次类推。这样逐级调用和返回之后,待这个数据块传输完成客户端后告诉namenode数据块传输完成,这时候namenode才会更新元数据信息记录操作日志。
5)第一个数据块传输完成后会使用同样的方式传输下面的数据块直到整个文件上传完成。
五、机架感知
HDFS采用一种称为机架感知(rack-aware)的策略来改进数据的可靠性、可用性和网络带宽的利用率。大型HDFS实例一般运行在跨越多个机架的计算机组成的集群上,不同机架上的两台机器之间的通讯需要经过交换机。在大多数情况下,同一个机架内的两台机器间的带宽会比不同机架的两台机器间的带宽大。通过一个机架感知的过程,Namenode可以确定每个Datanode所属的机架id。一个简单但没有优化的策略就是将副本存放在不同的机架上。这样可以有效防止当整个机架失效时数据的丢失,并且允许读数据的时候充分利用多个机架的带宽。这种策略设置可以将副本均匀分布在集群中,有利于当组件失效情况下的负载均衡。但是,因为这种策略的一个写操作需要传输数据块到多个机架,这增加了写的代价。在大多数情况下,副本系数是3,HDFS的存放策略是将一个副本存放在本地机架的节点上,一个副本放在同一机架的另一个节点上,最后一个副本放在不同机架的节点上。这种策略减少了机架间的数据传输,这就提高了写操作的效率。机架的错误远远比节点的错误少,所以这个策略不会影响到数据的可靠性和可用性。于此同时,因为数据块只放在两个(不是三个)不同的机架上,所以此策略减少了读取数据时需要的网络传输总带宽。在这种策略下,副本并不是均匀分布在不同的机架上。三分之一的副本在一个节点上,三分之二的副本在一个机架上,其他副本均匀分布在剩下的机架中,这一策略在不损害数据可靠性和读取性能的情况下改进了写的性能。