感知是无人驾驶车用静态摄像头和其他传感器来感知环境,需要使用大量计算机视觉技术。计算机视觉是指计算机如何看待和理解世界的方式,在如今的计算机视觉中最广泛使用的是CNN方法。
感知
- 1.计算机视觉
- 2.图像数据
- 摄像头图像
- LiDAR图像
- 3.机器学习
- 4.神经网络
- 5.反向传播算法
- 6.CNN
- 7.检测
- 8.跟踪
- 9.分割
- 10.Apollo感知
- 11.传感器数据比较
- 12.感知融合策略
1.计算机视觉
无人驾驶车有四个感知世界的核心任务:
- 检测Detection——指找出物体在环境中的位置;
- 分类Classification——指明确对象是什么;
- 跟踪Tracking——指随时间的推移观察移动物体;
- 语义分割Segmentation——将图像中的每个像素与语义类别进行匹配,如道路、汽车、天空。
将分类作为作为研究计算机视觉一般数据流程的例子。图像分类器是一种将图像作为输入,并输出标识该图像的标签的算法。例如交通标志分类器查看停车标志并识别它是停车标志、让路标志、限速标志、其他标志。分类其甚至可以识别行为,比如一个人是在走路还是在跑步。
分类器有很多种,但它们都包含一系列类似的步骤:
- 首先计算机接收类似摄像头等成像设备的输入。
- 通过预处理发送每个图像,预处理对每个图像进行了标准化处理,常见的预处理包括调整图像大小、旋转图像、将图像从一个色彩空间转换为另一个色彩空间,比如从全彩到灰度,处理可帮助我们的模型更快地处理和学习图像。
- 提取特征,特征有助于计算机理解图像,例如将汽车与自行车区分开来的一些显著特征。
- 这些特征被输入到分类模型中。此步骤使用特征来选择图像类别,例如分类器可以确定图像是否包含汽车、自行车、行人、不包含这样的对象。
为了完成这些视觉任务,需要建立模型,模型是帮助计算机了解图像内容的工具。
2.图像数据
摄像头图像
摄像头图像是最常见的计算机视觉数据。
从计算机的角度来看,图像只是一个二维网格被称为矩阵,矩阵中的每个单元格都包含一个值,数字图像全部由像素组成,其中包含非常小的颜色或强度单位,每个像素都是一个数值,这些值构成图像矩阵,也可以人为地改变这些像素值。通常这些数字网格是许多图像处理技术的基础,多数颜色和形状转换都只是通过对图像进行数学运算以及逐一像素进行更改来完成。
彩色图像被构建为值的三维立方体,每个立方体都有高度、宽度和深度,深度为颜色通道数量。大多数彩色图像以三种颜色组合表示红色、绿色、蓝色,称为RGB图像。对于RGB图像来说,深度值是3,因此可用立方体来表示。将深度视为三重叠加的二维色层。
LiDAR图像
感知扩展到传感器,而不仅是摄像头。
激光雷达传感器创建环境的点云表征,提供了难以通过摄像头图像获得的信息如距离和高度。激光雷达传感器使用光线尤其是激光来测量与环境中反射该光线的物体之间的距离,激光雷达发射激光脉冲并测量物体,通过计算将每个激光脉冲反射回传感器所花费的时间获得距离,激光雷达正是通过这种方式来构建世界的视觉表征。
激光雷达通过发射光脉冲来检测汽车周围的环境,蓝色点表示反射激光脉冲的物体,中间黑色区域是无人驾驶车本身占据的空间。由于激光雷达测量激光反射束,它收集的数据形成一团云或“点云”,点云中的每个点代表反射回传感器的激光束,表示关于物体的许多信息例如其形状和表面纹理。这些数据提供了足够的对象检测、跟踪、分类信息。例如,在点云上执行的检测和分类结果为红点为行人,绿点表示其他汽车。
激光雷达数据提供了用于构建世界视觉表征的足够空间信息,计算机视觉技术不仅可以使用摄像头图像进行对象分类,还可以使用点云和其他类型的空间相关数据进行对象分类。
3.机器学习
机器学习是使用特殊算法来训练计算机从数据中学习的计算机科学领域。通常,这种学习结果存放在“模型”中,有很多种模型,事实上“模型”只是一种可用于理解和预测世界的数据结构。机械学习诞生于20世纪60年代,但随着计算机的改进,在过去的20年中才真正的越来越受到欢迎。
机器学习涉及使用数据和相关的真值标记来进行模型训练。当提供数据和对应的标签给计算机进行学习,为监督式学习Supervised Learning;只提供数据,不提供真值标记,让计算机自行学习分类数据,为无监督学习Unsupervised Learning;将监督学习和无监督学习的特点结合在一起,使用少量的标记数据和大量的未标记数据来训练模型,为半监督学习;强化学习Reinforcement Learning涉及允许模型通过尝试许多不同的方法来解决问题,然后衡量哪种方法最为成功,计算机将尝试许多不同的解决方案,最终使其方法与环境相适应。
4.神经网络
人工神经网络用于无人驾驶车,受到构成人类神经系统的生物神经元启发,生物神经元通过相互连接构成了神经元网络或神经网络,通过类似的方式将人工神经元层连接起来以创建用于机器学习的人工神经网络。
人工神经网络是通过数据来学习复杂模式的工具,神经网络由大量的神经元组成,人工神经元负责传递和处理信息,也可以对这些神经元进行训练。人工神经网络通过密集训练,计算机可以辨别汽车、行人、交通信号灯、电线杆。
神经网络从图像中提取许多特征,但这些特征可能是人类无法描述或甚至无法理解的特征,计算机将调整这些特征的权重,以完成神经网络的最终任务。
5.反向传播算法
学习有时称为训练,由三步循环组成:
- 前馈:随机分配初始权重即人工神经元的值,通过神经网络来馈送每个图像产生输出值;
- 误差测定:误差是真值标记与与前馈过程所产生输出之间的偏差。
- 反向传播:通过神经网络反向发送误差,此过程类似前馈过程,只是以相反方向进行。
每个人工神经元都对其值进行微调,这是基于通过神经网络后向传播的误差,可生成更准确的网络。一个训练周期:包括前馈、误差测定、反向传播还远远不够。为了训练网络,通常需要数千个这样的周期,最终结果应该是模型能够根据新数据做出准确预测。
6.CNN
CNN对感知题特别有效,CNN接受多维输入包括定义大多数传感器数据的二维和三维形状。如果使用标准神经网络对图像进行分类,则需要通过一种方法将图像连接到网络的第一层,这属于一维。标准做法是通过将图像矩阵重塑为一个矢量,并在一个大行中连接所有列,将图像“展开”为一维像素阵列。
然而这种方法打破了图像中所嵌入的空间信息。CNN通过维持输入像素之间的空间关系来解决这个问题,CNN通过将过滤器连续滑过图像来收集信息,每次收集信息时,只对整个图像的一小部分区域进行分析,称为卷积。
当在整个输入图像上对一个过滤器进行卷积时,将该信息与下一个卷积层相关联。例如CNN识别第一个卷积层中的基本边缘和颜色信息,然后通过在第一层上卷积新过滤器,CNN使用边缘和颜色信息来归纳更复杂的结构如车轮、车门、挡风玻璃;而另一个卷积可使用车轮、车门、挡风玻璃识别整个车辆;最后神经网络可使用这一高阶信息对车辆进行分类。
CNN根据其任务查找真正需要的特征,任务可能是图像检测、分类、分割、其他类型的目标。
7.检测
感知任务中,首先是障碍物检测和分类。在驾驶过程中会遇到许多障碍物,静态障碍物包和动态障碍物。
计算机首先需要知道障碍物的位置,然后进行分类。在路中行驶的无人驾驶车可能会探测到许多不同的物体,汽车根据所感知的物体类型来确定路径和速度。如果感知到前方有一辆自行车,汽车可能会决定减速和变道,以便安全驶过自行车。但是如果感知到前方有另一辆车,并预测到前方车辆也将以接近限速的速度行驶,可能会保持其速度和车道。
将另一个示例为交通信号灯检测分类,首先将使用计算机视觉对图像中的交通信号灯进行定位,然后根据灯光显示颜色对交通信号灯进行分类。
无人驾驶中,使用CNN对障碍物进行检测和分类。可以先使用检测CNN来查找图像中的对象的位置,在对图像中的对象进行定位后,可以将图像发送给另一个CNN进行分类。也可以使用单一CNN体系结构对对象进行检测和分类,一种通常的做法为在单个网络体系结构的末端附加几个不同的“头”,一个头可能执行检测,另一个则可能执行分类。经典体系结构为 R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等,YOLO和SSD是具有类似形式的不同体系结构。
8.跟踪
检测完对象后,需要追踪它们追踪的意义:
- 首先追踪在检测失败时是至关重要的,如果在运行检测算法时,对象被其他对象遮挡一部分,则检测算法可能会失败,但追踪可以解决遮挡问题。
- 另一个原因在于追踪可以保留身份,障碍物检测的输出为包含对象的边界框,但是对象没有与任何身份关联,单独使用对象检测时,计算机不知道一个帧中的哪些对象与下一帧中的哪些对象相对应,该任务对人类来说很简单,但对汽车来说很困难。
追踪的第一步为确认身份,通过查找特征相似度最高的对象,将在之前的帧中检测到的所有对象与在当前的帧中检测到的对象进行匹配。对象具有各种特征,可能基于颜色、基于形状,计算机视觉算法可以计算出复杂的图像特征,如局部二值模式和方向梯度直方图。当然也需要考虑连续视频帧中,两个障碍物之间的位置和速度,由于两帧之间的对象位置和速度没有太大变化,该信息也可以帮助快速找到匹配的对象。
在确定身份后,可以使用对象的位置并结合预测算法以估计在下一个时间步的速度和位置,该预测可帮助识别下一帧中的相应对象。
9.分割
语义分割涉及对图像的每个像素进行分类,用于尽可能详细地了解环境并确定车辆可驾驶区域。
语义分割依赖于一种特殊类型的CNN,被称为全卷积网络FCN。FCN用卷积层来替代传统CNN体系结构末端的平坦层,现在网络中的每一层都是卷积层,因此名称为“全卷积网络”。
FCN提供了可在原始输入图像之上叠加的逐像素输出,必须考虑的一个复杂因素是大小。在典型的CNN中经过多次卷积之后所产生的输出比原始输入图像小得多。然而为了分割像素,输出尺寸必须与原始图像的尺寸相匹配。为了完成,可以对中间输出进行上采样处理,直到最终输出的大小与原始输出图像的大小相匹配。网络的前半部分通常被称为编码器,因为这部分网络对输入图像的特征进行了提取和编码。网络的后半部分通常被称为解码器,因为它对这些特征进行了解码并将其应用于输出。
10.Apollo感知
Apollo 开放式软件栈可感知障碍物、交通信号灯、车道。对于三维对象检测,Apollo 在高精度地图上使用感兴趣区域ROI来重点关注相关对象。Apollo将ROI过滤器应用于点云和图像数据,以缩小搜索范围并加快感知。
然后通过检测网络馈送已过滤的点云,输出用于构建围绕对象的三维边界框。
最后使用被称为检测跟踪关联的算法来跨时间步识别单个对象,该算法先保留在每个时间步要跟踪的对象列表,然后在下一个时间步中找到每个对象的最佳匹配。
对于交通信号灯的分类,Apollo先使用高精度地图来确定前方是否存在交通信号灯。如果前方有交通信号灯,则高精度地图会返回灯的位置。后续根据位置,摄像头搜索范围,在摄像头捕获到交通信号灯图像后。Apollo使用检测网络对图像中的灯进行定位,然后从较大的图像中提取交通信号灯。将裁剪的交通灯图像提供给分类网络以确定灯颜色,如果有许多灯则系统需要选择哪些灯与其车道相关。
Apollo使用 YOLO 网络来检测车道线、动态物体其中包括车辆、卡车、骑自行车的人、行人。在经过YOLO网络检测后,在线检测模块会并入来自其他传感器的数据对车道线预测进行调整,车道线最终被并入名为“虚拟车道”的单一数据结构中。同样也通过其他传感器的数据对YOLO网络所检测到的动态对象进行调整,以获得每个对象的类型、位置、速度、前进方向。虚拟通道和动态对象均被传递到规划与控制模块。
11.传感器数据比较
感知通常依赖于摄像头、激光雷达、雷达,如图显示了这三种传感器的优缺点。
- 摄像头非常适用于分类,在Apollo中摄像头主要用于交通信号灯分类、车道检测;
- 激光雷达的优势在于障碍物检测,即使在夜间仍能准确地检测障碍物;
- 雷达在探测范围和应对恶劣天气方面占优势。
通过融合这三种传感器的数据可实现最佳聚合性能,被称为“传感器融合”。
雷达已经在汽车上使用很多年,在各种系统中都需要雷达,如自适应巡航控制、盲点警告、碰撞警告和碰撞预防系统等。尽管雷达技术已经成熟,它仍在不断进步,作用不断提升。其他传感器测量速度的方法是计算两次读数之间的差距,而雷达则通过多普勒效应来直接测量速度。多普勒效应根据对象在远离还是接近你,测量出雷达的频率变化。就像消防车警报器一样,当车辆正在远离你和驶向你时,听起来声是不一样的。多普勒效应对传感器融合至关重要。因为它可以把速度作为独立的测量参数,从而提升了融合算法的收敛速度。雷达还可以生成环境的雷达地图,进而实现定位。因为雷达波在坚硬表面会回弹。因此,它可以直接测量对象距离,无需在视线范围内也可以。雷达可以看到其他车辆底部。并发现可能会被阻挡的建筑物和对象。在车上的所有传感器中,雷达是不容易受雨雾影响的。而且视野宽阔,可达150度,距离可达200多米。
与激光雷达和摄像头相比,雷达分辨率较低,尤其是在垂直方向,分辨率非常有限。分辨率低意味着来自静态物体的反射可能产生问题。例如,街道上检修孔盖或汽水罐,可能产生很高的雷达反射率,但他们并不大。我们将其称为雷达杂波。因此,当前的车载雷达通常会忽视静态物体。激光雷达是激光探测与测量的简称,而雷达则是无线电探测与测量的简称。雷达使用无线电波,而激光雷达则使用红激光束来确定传感器和附近对象的距离。目前的激光雷达大多使用900nm光波长度的光源。但部分激光雷达使用的光波长度更长,在雨雾中性能更好。当前的激光雷达使用旋转座架发射激光,扫描周边环境。激光室脉冲式的,脉冲被对象反射,然后返回一个点云,来代表这些物体。激光雷达的空间分辨率远远高于雷达。因为激光束越聚焦,垂直方向的扫描层数量就越多,因此每层的激光雷达的密度也越高。目前,激光雷达还不能直接测量对象的速度,必须使用两次或多次扫描之间的位置差来确定。激光雷达受天气和传感器清洁程度影响也很大,因此需要保持清洁。它们块头也比其他传感器更大,因此也很难安装,除非你只想在车顶安装一个大的激光扫描器。
12.感知融合策略
Apollo使用激光雷达和雷达来检测障碍物,用于融合输出的主要算法为卡尔曼滤波。
卡尔曼滤波有两个步骤:第一步为预测状态,第二步是更新测量结果。设想正在跟踪一名行人,这里的状态表示行人的位置和速度,从已经掌握的行人状态开始,使用这些信息来执行卡尔曼滤波的第一步,即预测行人在将来的状态;下一步为误差结果更新,使用新的传感器来更新所认为的行人状态,卡尔曼滤波算法是预测和更新步骤的无限循环。
实际上有两种测量结果更新步骤:同步和异步。同步融合同时更新来自不同传感器的测量结果,而异步融合则逐个更新所收到的传感器测量结果。传感器融合可提高感知性能,因为各传感器相辅相成,融合也可以减少跟踪误差。