文章目录
- 一、与Hive的集成
- 1.1 HBase与Hive的对比
- 1.2 HBase与Hive集成环境准备
- 1.3 案例一:HBase表关联Hive表
- 1.4 案例二:Hive表关联HBase表
- 二、HBase优化
- 2.1 Master高可用
- 2.2 预分区
- 2.3 RowKey设计
- 2.4 内存优化
- 2.5 基础优化
一、与Hive的集成
1.1 HBase与Hive的对比
Hive | HBase |
数据仓库:Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。 | 一种面向列存储的非关系型数据库 |
Hive适用于离线的数据分析和清洗,延迟较高。 | 用于存储结构化和非结构化的数据,适用于单表非关系型数据的存储,不适合做关联查询,类似JOIN等操作 |
基于HDFS、MapReduce:Hive存储的数据依旧在DataNode上,编写的HQL语句终将是转换为MapReduce代码执行。 | 基于HDFS:数据持久化存储的体现形式是Hfile,存放于DataNode中,被ResionServer以region的形式进行管理。 |
面对大量的企业数据,HBase可以直线单表大量数据的存储,同时提供了高效的数据访问速度,延迟较低。 |
1.2 HBase与Hive集成环境准备
重新编译hive-hbase-handler-1.2.1.jar
后放到hive
下lib
目录。
因为我们后续可能会在操作Hive
的同时对HBase
也会产生影响,所以Hive
需要持有操作HBase
的Jar
,那么接下来拷贝Hive
所依赖的Jar
包(或者使用软连接的形式)。
添加环境变量:
#HBase
export HBASE_HOME=/opt/module/hbase-1.3.1
#Hive
export HIVE_HOME=/opt/module/hive-1.2.1
建立软连接:
ln -s $HBASE_HOME/lib/hbase-common-1.3.1.jar $HIVE_HOME/lib/hbase-common-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-server-1.3.1.jar $HIVE_HOME/lib/hbase-server-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-client-1.3.1.jar $HIVE_HOME/lib/hbase-client-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-protocol-1.3.1.jar $HIVE_HOME/lib/hbase-protocol-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-it-1.3.1.jar $HIVE_HOME/lib/hbase-it-1.3.1.jar
ln -s $HBASE_HOME/lib/htrace-core-3.1.0-incubating.jar $HIVE_HOME/lib/htrace-core-3.1.0-incubating.jar
ln -s $HBASE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-hadoop-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop-compat-1.3.1.jar
同时在hive-site.xml
中修改zookeeper
的属性,如下:
<property>
<name>hive.zookeeper.quorum</name>
<value>hadoop102,hadoop103,hadoop104</value>
</property>
<property>
<name>hive.zookeeper.client.port</name>
<value>2181</value>
</property>
1.3 案例一:HBase表关联Hive表
目标:建立Hive
表,关联HBase
表,插入数据到Hive
表的同时能够影响HBase
表。
- 在
Hive
中创建表同时关联HBase
,执行完成之后,可以分别进入Hive
和HBase
查看,都生成了对应的表
CREATE TABLE hive_hbase_emp_table(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno")
TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table");
-
Hive
中创建临时中间表,用于load
文件中的数据
CREATE TABLE emp(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
row format delimited fields terminated by '\t';
- 向
Hive
中间表中load
数据,并导入数据到Hive
表
hive> load data local inpath '/root/data/emp.txt' into table emp;
hive> insert into table hive_hbase_emp_table select * from emp;
- 查看
Hive
以及关联的HBase
表中是否已经成功的同步插入了数据Hive
:hive> select * from hive_hbase_emp_table;
HBase
:scan ‘hbase_emp_table’
1.4 案例二:Hive表关联HBase表
目标:Hive
中创建一个外部表来关联HBase
中的hbase_emp_table
这张表,使之可以借助Hive
来分析HBase
这张表中的数据。
- 在
Hive
中创建外部表
CREATE EXTERNAL TABLE relevance_hbase_emp(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
STORED BY
'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" =
":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno")
TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table");
- 关联后就可以使用
Hive
函数进行一些分析操作了
hive (default)> select * from relevance_hbase_emp;
二、HBase优化
2.1 Master高可用
在HBase
中Hmaster
负责监控RegionServer
的生命周期,均衡RegionServer
的负载,如果Hmaster
挂掉了,那么整个HBase
集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以HBase
支持对Hmaster
的高可用配置。
在conf
目录下创建backup-masters
文件,并分发该文件
[root@hadoop100 hbase-1.3.1]# vim conf/backup-masters
hadoop102
此时访问http://hadoop102:16010
:
2.2 预分区
每一个Region
维护着StartRow
与EndRowKey
,如果加入的数据符合某个Region
维护的RowKey
范围,则该数据交给这个Region
维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高HBase
性能。
①手动设定预分区
hbase> create 'staff1','info','partition1',SPLITS => ['1000','2000','3000','4000']
②生成16进制序列预分区
hbase> create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
③按照文件中设置的规则预分区
创建splits.txt
文件内容如下:
aaaa
bbbb
cccc
dddd
然后执行:
hbase> create 'staff3','partition3',SPLITS_FILE => '/root/splits.txt'
④使用JavaAPI
创建预分区
//自定义算法,产生一系列Hash散列值存储在二维数组中
byte[][] splitKeys = 某个散列值函数
//创建HBaseAdmin实例
HBaseAdmin hAdmin = new HBaseAdmin(HBaseConfiguration.create());
//创建HTableDescriptor实例
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
//通过HTableDescriptor实例和散列值二维数组创建带有预分区的HBase表
hAdmin.createTable(tableDesc, splitKeys);
2.3 RowKey设计
一条数据的唯一标识就是rowkey
,那么这条数据存储于哪个分区,取决于rowkey
处于哪个一个预分区的区间内,设计rowkey
的主要目的 ,就是让数据均匀的分布于所有的region
中,在一定程度上防止数据倾斜。接下来我们就谈一谈rowkey
常用的设计方案。
①生成随机数、hash
、散列值
比如:
原本rowKey
为1001
的,SHA1
后变成:dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原本rowKey
为3001
的,SHA1
后变成:49042c54de64a1e9bf0b33e00245660ef92dc7bd
原本rowKey
为5001
的,SHA1
后变成:7b61dec07e02c188790670af43e717f0f46e8913
在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的rowKey
来Hash
后作为每个分区的临界值。
②字符串反转20170524000001
转成10000042507102
20170524000002
转成20000042507102
这样也可以在一定程度上散列逐步put进来的数据。
③字符串拼接20170524000001_a12e
20170524000001_93i7
2.4 内存优化
HBase
操作过程中需要大量的内存开销,毕竟Table
是可以缓存在内存中的,一般会分配整个可用内存的70%给HBase
的Java
堆。但是不建议分配非常大的堆内存,因为GC
过程持续太久会导致RegionServer
处于长期不可用状态,一般16~48G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。
2.5 基础优化
①允许在HDFS的文件中追加内容hdfs-site.xml
、hbase-site.xml
属性:dfs.support.append
解释:开启HDFS
追加同步,可以优秀的配合HBase
的数据同步和持久化。默认值为true
。
②优化DataNode允许的最大文件打开数hdfs-site.xml
属性:dfs.datanode.max.transfer.threads
解释:HBase
一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为4096或者更高。默认值:4096
③优化延迟高的数据操作的等待时间hdfs-site.xml
属性:dfs.image.transfer.timeout
解释:如果对于某一次数据操作来讲,延迟非常高,socket
需要等待更长的时间,建议把该值设置为更大的值(默认60000毫秒),以确保socket
不会被timeout
掉。
④优化数据的写入效率mapred-site.xml
属性:mapreduce.map.output.compress
mapreduce.map.output.compress.codec
解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为true
,第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec
或者其他压缩方式。
⑤设置RPC监听数量hbase-site.xml
属性:hbase.regionserver.handler.count
解释:默认值为30,用于指定RPC监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。
⑥优化HStore文件大小hbase-site.xml
属性:hbase.hregion.max.filesize
解释:默认值10737418240(10GB),如果需要运行HBase
的MR
任务,可以减小此值,因为一个region
对应一个map
任务,如果单个region
过大,会导致map
任务执行时间过长。该值的意思就是,如果HFile
的大小达到这个数值,则这个region
会被切分为两个Hfile
。
⑦优化hbase客户端缓存hbase-site.xml
属性:hbase.client.write.buffer
解释:用于指定HBase
客户端缓存,增大该值可以减少RPC
调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少RPC
次数的目的。
⑧指定scan.next扫描HBase所获取的行数hbase-site.xml
属性:hbase.client.scanner.caching
解释:用于指定scan.next
方法获取的默认行数,值越大,消耗内存越大。
⑨flush、compact、split机制
当MemStore
达到阈值,将Memstore
中的数据Flush
进Storefile
;compact
机制则是把flush
出来的小文件合并成大的Storefile
文件。split
则是当Region
达到阈值,会把过大的Region
一分为二。
涉及属性:
即:128M就是Memstore
的默认阈值hbase.hregion.memstore.flush.size
:134217728
即:这个参数的作用是当单个HRegion
内所有的Memstore
大小总和超过指定值时,flush
该HRegion
的所有Memstore
。RegionServer
的flush
是通过将请求添加一个队列,模拟生产消费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM
。hbase.regionserver.global.memstore.upperLimit
:0.4hbase.regionserver.global.memstore.lowerLimit
:0.38
即:当MemStore
使用内存总量达到hbase.regionserver.global.memstore.upperLimit
指定值时,将会有多个MemStores flush
到文件中,MemStore flush
顺序是按照大小降序执行的,直到刷新到MemStore
使用内存略小于lowerLimit
。