Android中的线程池
线程池有以下三个优点:
(1)重用线程池中的线程,避免因为线程的创建和销毁所带来的性能开销。
(2)能有效控制线程的最大并发数,避免大量的线程之间的相互抢占资源而导致的阻塞现象。
(3)能够对线程进行简单的管理,并提供定时执行以及指定间隔循环执行等功能。
Android中的线程池的概念来源于Java中的Executor。Executor是个接口,真正的线程池实现为ThreadPoolExecutor。
ThreadPoolExecutor比较常用的构造:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime
TimeUnit unit,
BlockingQueue<Runnable>workQueue,
ThreadFactory threadFactory)
corePoolSize
核心线程数。默认情况下,核心线程会在线程中一直存活,即使他们处于闲置状态。如果将ThreadPoolExecutor的allowCoreThreadTimeOut属性设置为true,那么闲置的核心线程在等待新任务到来时会有超时策略,这个时间间隔由keepAliveTime所指定,当等待时间超过keepAliveTime所指定的时长后,核心线程就回被终止。
maximumPoolSize
线程池所能容纳的最大线程数,当活动线程数达到这个数值后,后续的新任务将会被阻塞。
keepAliveTime
非核心线程闲置时的超时时长。超过这个时长,非核心线程就会被回收。当ThreadPoolExecutor的allowCoreThreadTimeOut属性设置为true时,keepAliveTime同样会作用于核心线程。
unit
用于指定keepAliveTime参数的时间单位,这是一个枚举,常用的有TimeUnit.MILLISECONDS(毫秒)、TimeUnit.SECONDS(秒)以及TimeOut.MINUTES(分钟)等。
workQueue
线程池中的任务队列,通过线程池的恩行execute方法提交的Runnable对象会存储在这个参数中。
threadFactory
线程工厂,为线程池提供创建新线程的功能。ThreadFactory是一个接口,它只有一个方法:Thread newThread(Runnable r).
ThreadPoolExecutor执行任务时大致遵循如下规则:
(1)如果线程池中的线程数量未达到核心线程的数量,那么会直接启动一个核心线程来执行任务。
(2)如果线程池中的线程数量已经达到或者超过核心线程数量,那么任务会被插入到任务队列中排队等待执行。
(3)如果在步骤(2)中无法将任务插入到任务队列中,这往往是由于任务队列已满,这个时候如果线程数量未达到线程池规定的最大值,那么会立刻启动一个非核心线程来执行任务。
(4)如果步骤(3)中的线程数量以及达到线程池规定的最大值,那么就拒绝执行此任务,ThreadPoolExecutor会调用RejectedExecutionHandler的rejectedExecution方法来通知调用者。
ThreadPoolExecutor的参数配置在AsnycTask中有明显的提现:
public abstract class AsyncTask<Params, Progress, Result> {
private static final String LOG_TAG = "AsyncTask";
private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
private static final int CORE_POOL_SIZE = CPU_COUNT + 1;
private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
private static final int KEEP_ALIVE = 1;
private static final ThreadFactory sThreadFactory = new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger(1);
public Thread newThread(Runnable r) {
return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
}
};
private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable>(128);
/**
* An {@link Executor} that can be used to execute tasks in parallel.
*/
public static final Executor THREAD_POOL_EXECUTOR
= new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);
从上面的代码可以看出,AsyncTask对THREAD_POOL_EXECUTOR这个线程池进行了如下规格配置:
- 核心线程数等于CPU核心数+1;
- 线程池的最大线程数为cpu核心数的2倍+1;
- 核心线程无超时机制,非核心线程在闲置时的超时时间为1秒;
- 任务队列的容量为128.
线程池的分类
1.FixedThreadPool
通过Executors的newFixedThreadPool方法来创建。它是一种线程数量固定的线程池,当线程处于空闲时,它们不会被回收,除非线程池被关闭了。当所有的线程都处于活动状态时,新任务都会处于等待状态,直到有线程空闲出来。由于FixedThreadPool只有核心线程并且这些核心线程不会被回收,这意味着它能够更快的响应外界的请求。newFixedThreadPool方法的实现如下:
public class Executors {
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
...
}
2.CachedThreadPool
通过Executors的newCachedThreadPool方法来创建。它是一种线程数量不固定的线程池,它只有非核心线程,并且最大线程数为Integer.MAX_VALUE。当线程池中的线程都处于活动状态时,线程池会创建新的线程来处理新任务,否则就会利用空闲的线程来处理新任务。线程池中的空闲线程都有超时机制,超时时长是60秒。和FixedThreadPool不同的是,CachedThreadPool的任务队列其实相当于一个空集合,这将导致任何任务都会立即执行,因为在这种场景下SynchronousQueue是无法插入任务的。CachedThreadPool线程池比较适合执行大量的耗时较少的任务。当整个线程池处于闲置状态时,线程池中的线程都会超时而被停止,这个时候CachedThreadPool之中实际上是没有任何线程的,它几乎不占用系统资源。
newCachedThreadPool方法实现如下:
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
3.ScheduledThreadPool
通过Executors的newScheduledThreadPool方法来创建。它的核心线程数量是固定的,而非核心线程数时没有限制的,并且当非核心线程闲置时会被立即回收。这类线程池主要用于执行定时任务和具有固定周期的重复任务,实现如下:
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
new DelayedWorkQueue());
}
4.SingleThreadExecutor
通过Executors的newSingleThreadExecutor方法来创建。这类线程池内部只有一个核心线程,它确保所有的任务都在同一个线程中按顺序执行。使得所有任务间不需要处理线程同步的问题。实现如下:
public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1));
}