> 老司机们都知道,Android的线程间通信就靠Handler、Looper、Message、MessageQueue这四个麻瓜兄弟了,那么,他们是怎么运作的呢?下面做一个基于主要源代码的大学生水平的分析。
##Looper(先分析这个是因为能够引出四者的关系)
在Looper中,维持一个`Thread`对象以及`MessageQueue`,通过Looper的构造函数我们可以知道:
```
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);//传入的参数代表这个Queue是否能够被退出
mThread = Thread.currentThread();
}
```
`Looper`在构造函数里干了两件事情:
1. 将线程对象指向了创建`Looper`的线程
2. 创建了一个新的`MessageQueue`
分析完构造函数之后,接下来我们主要分析两个方法:
1. `looper.loop()`
2. `looper.prepare()`
###looper.loop()(在当前线程启动一个Message loop机制,此段代码将直接分析出Looper、Handler、Message、MessageQueue的关系)
```
public static void loop() {
final Looper me = myLooper();//获得当前线程绑定的Looper
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;//获得与Looper绑定的MessageQueue
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
//进入死循环,不断地去取对象,分发对象到Handler中消费
for (;;) {
Message msg = queue.next(); // 不断的取下一个Message对象,在这里可能会造成堵塞。
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
//在这里,开始分发Message了
//至于这个target是神马?什么时候被赋值的?
//我们一会分析Handler的时候就会讲到
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
//当分发完Message之后,当然要标记将该Message标记为 *正在使用* 啦
msg.recycleUnchecked();
}
}
```
*分析了上面的源代码,我们可以意识到,最重要的方法是:*
1. `queue.next()`
2. `msg.target.dispatchMessage(msg)`
3. `msg.recycleUnchecked()`
其实Looper中最重要的部分都是由`Message`、`MessageQueue`组成的有木有!这段最重要的代码中涉及到了四个对象,他们与彼此的关系如下:
1. `MessageQueue`:装食物的容器
2. `Message`:被装的食物
3. `Handler`(msg.target实际上就是`Handler`):食物的消费者
4. `Looper`:负责分发食物的人
###looper.prepare()(在当前线程关联一个Looper对象)
```
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
//在当前线程绑定一个Looper
sThreadLocal.set(new Looper(quitAllowed));
}
```
以上代码只做了两件事情:
1. 判断当前线程有木有`Looper`,如果有则抛出异常(在这里我们就可以知道,Android规定一个线程只能够拥有一个与自己关联的`Looper`)。
2. 如果没有的话,那么就设置一个新的`Looper`到当前线程。
--------------
##Handler
由于我们使用Handler的通常性的第一步是:
```
Handler handler = new Handler(){
//你们有没有很好奇这个方法是在哪里被回调的?
//我也是!所以接下来会分析到哟!
@Override
public void handleMessage(Message msg) {
//Handler your Message
}
};
```
所以我们先来分析`Handler`的构造方法
```
//空参数的构造方法与之对应,这里只给出主要的代码,具体大家可以到源码中查看
public Handler(Callback callback, boolean async) {
//打印内存泄露提醒log
....
//获取与创建Handler线程绑定的Looper
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
//获取与Looper绑定的MessageQueue
//因为一个Looper就只有一个MessageQueue,也就是与当前线程绑定的MessageQueue
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
```
*带上问题:*
1. `Looper.loop()`死循环中的`msg.target`是什么时候被赋值的?
2. `handler.handleMessage(msg)`在什么时候被回调的?
###A1:`Looper.loop()`死循环中的`msg.target`是什么时候被赋值的?
要分析这个问题,很自然的我们想到从发送消息开始,无论是`handler.sendMessage(msg)`还是`handler.sendEmptyMessage(what)`,我们最终都可以追溯到以下方法
```
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
//引用Handler中的MessageQueue
//这个MessageQueue就是创建Looper时被创建的MessageQueue
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
//将新来的Message加入到MessageQueue中
return enqueueMessage(queue, msg, uptimeMillis);
}
```
我们接下来分析`enqueueMessage(queue, msg, uptimeMillis)`:
```
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
//显而易见,大写加粗的赋值啊!
**msg.target = this;**
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
```
###A2:`handler.handleMessage(msg)`在什么时候被回调的?
通过以上的分析,我们很明确的知道`Message`中的`target`是在什么时候被赋值的了,我们先来分析在`Looper.loop()`中出现过的过的`dispatchMessage(msg)`方法
```
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
//看到这个大写加粗的方法调用没!
**handleMessage(msg);**
}
}
```
加上以上分析,我们将之前分析结果串起来,就可以知道了某些东西:
`Looper.loop()`不断地获取`MessageQueue`中的`Message`,然后调用与`Message`绑定的`Handler`对象的`dispatchMessage`方法,最后,我们看到了`handleMessage`就在`dispatchMessage`方法里被调用的。
------------------
通过以上的分析,我们可以很清晰的知道Handler、Looper、Message、MessageQueue这四者的关系以及如何合作的了。
#总结:
当我们调用`handler.sendMessage(msg)`方法发送一个`Message`时,实际上这个`Message`是发送到**与当前线程绑定**的一个`MessageQueue`中,然后**与当前线程绑定**的`Looper`将会不断的从`MessageQueue`中取出新的`Message`,调用`msg.target.dispathMessage(msg)`方法将消息分发到与`Message`绑定的`handler.handleMessage()`方法中。
一个`Thread`对应多个`Handler`
一个`Thread`对应一个`Looper`和`MessageQueue`,`Handler`与`Thread`共享`Looper`和`MessageQueue`。
`Message`只是消息的载体,将会被发送到**与线程绑定的唯一的**`MessageQueue`中,并且被**与线程绑定的唯一的**`Looper`分发,被与其自身绑定的`Handler`消费。
------
- Enjoy Android :) 如果有误,轻喷,欢迎指正。