1.原因
核心就是对于单一投资品的收益率,对数收益率时序可加;对于不同投资品的截面收益率,应该用百分比收益率,因为它在截面上有可加性;另外对数收益率对建模有帮助。
2.解释
如果我们考察单一投资品在总共 T 期内的表现,那应该用对数收益率,而非算数收益率。算术平均值不能正确的反应一个投资品的收益率。比如一个投资品今年涨了 50%,明年跌了 50%,它的算数平均收益率为 0;但事实上,两年后该投资品亏损了最初资金的 25%。相反的,对数收益率由于具备可加性,它的均值可以正确反映出该投资品的真实收益率。比如这两年的对数收益率分别为 40.5% 和 -69.3%,平均值为 -28.77%,转换为百分比亏损就是 exp{-28.77%} - 1 = -25%。
对数收益率的时序可加性让我们能够使用另外两个利器:“中心极限定理”和“大数定律”。假设初始资金 X_0(假设等于 1),ln(X_T) = ln(X_T/X_0) 就是整个 T 期的对数收益率。对数收益率的最大好处是它的可加性,把单期的对数收益率相加就得到整体的对数收益率。