在上篇博客简单介绍了滑动窗口技术以及切图程序的使用文档,这篇展示对子图进行反向拼接到原图上(用于对测试集子图预测后结果汇总到原图上)的程序代码以及使用说明。

所需模块:numpy、pandas、matplotlib、pyecharts、torch、opencv、Crop(上篇作者写的模块)

Connect.py

import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号

import cv2
from PIL import ImageDraw, Image, ImageFont

from pyecharts.charts import Bar, Pie, Grid
from pyecharts import options as opts

import torch
from torchvision.transforms import transforms

from Crop import toYolo, save_txt, computeSlicePosition, slidingWindowCrop


# 取顔色
def color_list():
    # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
    def hex2rgb(h):
        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))

    return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()]  # or BASE_ (8), CSS4_ (148), XKCD_ (949)


# 对子图预测的重叠部分进行非极大值抑制
def NMS(boxes, scores, iou_thres, GIoU=False, DIoU=False, CIoU=False):
    """
    :param boxes:  (Tensor[N, 4])): are expected to be in ``(x1, y1, x2, y2)
    :param scores: (Tensor[N]): scores for each one of the boxes
    :param iou_thres: discards all overlapping boxes with IoU > iou_threshold
    :return:keep (Tensor): int64 tensor with the indices
            of the elements that have been kept
            by NMS, sorted in decreasing order of scores
    """
    # 按conf从大到小排序
    B = torch.argsort(scores, dim=-1, descending=True)
    keep = []
    repeat = []
    while B.numel() > 0:
        # 取出置信度最高的
        index = B[0]
        keep.append(index.tolist())
        if B.numel() == 1: break
        # 计算iou,根据需求可选择GIOU,DIOU,CIOU
        iou = bbox_iou(boxes[index, :], boxes[B[1:], :], GIoU=GIoU, DIoU=DIoU, CIoU=CIoU)
        # 找到符合阈值的下标
        inds = torch.nonzero(iou <= iou_thres).reshape(-1)
        no_inds = torch.nonzero(iou > iou_thres).reshape(-1)
        for i in no_inds:
            repeat.append((B[0], B[i + 1]))
        B = B[inds + 1]
    # repeat存储每个匹配对,即保存的与删除的对,用于存在两个子图框都不为完整时(由于原图框较大而重叠率较小时可能会导致)融合得到完整框
    return keep, repeat


# 计算iou
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union
    if GIoU or DIoU or CIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / np.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha = v / ((1 + eps) - iou + v)
                return iou - (rho2 / c2 + v * alpha)  # CIoU
        else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
            c_area = cw * ch + eps  # convex area
            return iou - (c_area - union) / c_area  # GIoU
    else:
        return iou  # IoU


# 将子图坐标信息转换到原图上的坐标信息
def transAnchor(boxes, subimage_position, nrow_ncol, Width_Height, windowSize, stepLength):
    img_row, img_col = subimage_position  # 位置索引
    nrow, ncol = nrow_ncol
    sliceWidth, sliceHeight = windowSize
    Width, Height = Width_Height
    dx, dy = stepLength

    if img_col == ncol - 1:  # 如果为最后一列
        boxes.iloc[:, [1, 3]] += (Width - sliceWidth)
    else:
        boxes.iloc[:, [1, 3]] += img_col * dx

    if img_row == nrow - 1:  # 如果为最后一行
        boxes.iloc[:, [2, 4]] += (Height - sliceHeight)
    else:
        boxes.iloc[:, [2, 4]] += img_row * dy

    return boxes


# 将一个框绘制在原图上
def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
    img = Image.fromarray(img)
    draw = ImageDraw.Draw(img)
    line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
    draw.rectangle(box[:4], width=line_thickness, outline=tuple(color))  # plot
    confidence = box[4] if len(box) == 5 else None
    label = label + ' ' + str(confidence) if confidence else label
    if label:
        fontsize = 60
        font = ImageFont.truetype("font/simsun.ttc", fontsize, encoding="utf-8")
        txt_width, txt_height = font.getsize(label)
        draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
        draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
    return np.asarray(img)


# 将所有目标框绘制在原图上,name:结果展示窗口的名字,label_names:每个标签代表的含义,为字典存储
def plot_boxes(img, labels, name='image', label_names=None, show=False, wait=100):
    colors = color_list()
    for cls, *box in labels:
        color = colors[int(cls) % len(colors)]
        img = plot_one_box_PIL(box, img, color=color, label=label_names[int(cls)] if label_names else None)
    if show:
        cv2.namedWindow(name, cv2.WINDOW_NORMAL)
        cv2.resizeWindow(name, 1368, 912)
        cv2.moveWindow(name, 0, 0)
        cv2.imshow(name, img)
        # 一定要加这一句,否则图片会一闪而过
        cv2.waitKey(wait)

    return img


# 获得原图目标框数据
def getAnchor(image, image_name, txt_dir_path, GIoU=False, DIoU=False, CIoU=False, sliceWidth=2200, sliceHeight=1900,
              overlap=0.5, iou_thres=0.35):
    dx, dy = int(sliceWidth * (1 - overlap)), int(sliceHeight * (1 - overlap))
    Width, Height = image.shape[1], image.shape[0]
    txt_data = pd.DataFrame()
    # 计算切图有几行几列
    sub_img_row_nums = len(computeSlicePosition(Height, sliceHeight, overlap))
    sub_img_col_nums = len(computeSlicePosition(Width, sliceWidth, overlap))

    for row in range(0, sub_img_row_nums):
        for col in range(0, sub_img_col_nums):
            sub_path = os.path.join(txt_dir_path, image_name.split('.')[0] + f'_{row}' + f'_{col}' + '.txt')
            try:
                sub_txt = pd.read_table(sub_path, header=None, sep=' ')
                sub_txt.loc[:, [1, 2]], sub_txt.loc[:, [3, 4]] = (sub_txt.loc[:, [1, 2]].values - (
                        sub_txt.loc[:, [3, 4]] / 2).values) * np.array([sliceWidth, sliceHeight]), \
                                                                 (sub_txt.loc[:, [1, 2]].values + (sub_txt.loc[:, [3,
                                                                                                                   4]] / 2).values) * np.array(
                                                                     [sliceWidth, sliceHeight])

                # 将相对于子图上的坐标转换为相对于原图上的坐标
                sub_txt = transAnchor(sub_txt, (row, col), (sub_img_row_nums, sub_img_col_nums),
                                      (Width, Height), (sliceWidth, sliceHeight), (dx, dy))  # 子图位置、子图序号、分割图的步幅

                txt_data = pd.concat((txt_data, sub_txt))
            except:
                pass

    txt_data = torch.from_numpy(txt_data.values)
    # 若没有置信度则以框的面积作为score
    if len(txt_data) > 0:
        if len(txt_data[0]) == 6:
            score = txt_data[:, -1]
        else:
            score = (txt_data[:, 3] - txt_data[:, 1]) * (txt_data[:, 4] - txt_data[:, 2])
    else:
        score = torch.tensor([])
    keep, repeat_boxes = NMS(txt_data[:, 1:5] if len(txt_data) > 0 else torch.tensor([]), score, \
                             iou_thres=iou_thres, GIoU=GIoU, DIoU=DIoU, CIoU=CIoU)
    # 根据留下的框以及去除的相似框的两个框坐标更新留下的框坐标
    for keep_box, delete_box in repeat_boxes:
        x1min, y1min, x1max, y1max = txt_data[keep_box][1:5]
        x2min, y2min, x2max, y2max = txt_data[delete_box][1:5]
        x_pos = np.sort([x1min, x1max, x2min, x2max])
        y_pos = np.sort([y1min, y1max, y2min, y2max])
        txt_data[keep_box][1:5] = torch.tensor([x_pos[0], y_pos[0], x_pos[3], y_pos[3]])
    #     print(image_name+f' 抑制重复框数量:{len(txt_data)-len(keep)}')
    #     print(txt_data[keep].numpy())

    return txt_data[keep].numpy()


# 保存单张结合图
def save_connect_image(save_image_path, image, labels, resize=(640, 640), only_save_have_box=False):
    if only_save_have_box:
        if len(labels) != 0:
            transforms.ToPILImage()(image[:, :, [2, 1, 0]]).resize(resize).save(save_image_path)

    else:
        transforms.ToPILImage()(image[:, :, [2, 1, 0]]).resize(resize).save(save_image_path)
    if not only_save_have_box or len(labels) != 0:
        print('save:', save_image_path)


# 保存单个结合图的目标框数据txt文件
def save_connect_txt(save_txt_path, image, labels, coordinates='x1y1x2y2'):
    if coordinates in ['yolo', 'x1y1x2y2']:
        pass
    else:
        raise Exception('coordinates参数需指定yolo或x1y1x2y2之一')
    #  防止原来存在txt导致写入出错

    if os.path.exists(save_txt_path):
        os.remove(save_txt_path)
    for label in labels:
        #         print('label',label)
        data = label.tolist()
        data[:5] = toYolo(data, image.shape[1], image.shape[0]) if coordinates == 'yolo' else data[:5]

        save_txt(save_txt_path, data, )
    if len(labels) != 0:
        print('save:', save_txt_path)


# 连接单张图并保存
def saveConnect(image_path, image_name, windowSize, rowcol, overlap, iou_thres, label_names, test_labels_path,
                window_name,
                wait, save_imagedir_path, save_labeldir_path, resize, show, coordinates, only_save_have_box):
    print(image_path)
    image = cv2.imread(image_path)
    Width, Height = image.shape[1], image.shape[0]
    if rowcol:
        sliceWidth, sliceHeight = slidingWindowCrop.ranksGetWindowSize(rowcol, (Width, Height), overlap)
    else:
        sliceWidth, sliceHeight = windowSize
    labels = getAnchor(image, image_name, test_labels_path, sliceWidth=sliceWidth, sliceHeight=sliceHeight,
                       overlap=overlap, iou_thres=iou_thres)
    labels[:5] = np.round(labels[:5])
    image = plot_boxes(image, labels, name=window_name, label_names=label_names, show=show, wait=wait)

    if save_imagedir_path:
        filename = os.path.join(save_imagedir_path, image_name)
        resize = (Width, Height) if not resize else resize
        save_connect_image(filename, image, labels, resize, only_save_have_box)

    if save_labeldir_path:
        filename = os.path.join(save_labeldir_path, image_name.split('.')[0] + '.txt')
        save_connect_txt(filename, image, labels, coordinates)

    return labels


# 保存连接图,可对单张图片或文件夹中所有图片进行连接并展示
def connectImage(test_data_path, test_labels_path, save_imagedir_path=None, save_labeldir_path=None,
                 windowSize=(2200, 1900), overlap=0.5, iou_thres=0.3, coordinates='x1y1x2y2',
                 resize=None, label_names=None, only_save_have_box=True, show=True, rowcol=None):
    if os.path.isdir(test_data_path):
        test_images_name = os.listdir(test_data_path)
        for image_name in test_images_name:
            image_path = os.path.join(test_data_path, image_name)
            saveConnect(image_path, image_name, windowSize, rowcol, overlap, iou_thres, label_names, test_labels_path,
                        'image', 50,
                        save_imagedir_path, save_labeldir_path, resize, show, coordinates, only_save_have_box)
    else:
        #         print(image)
        image_name = test_data_path.split('/')[-1]
        labels = saveConnect(test_data_path, image_name, windowSize, rowcol, overlap, iou_thres, label_names,
                             test_labels_path, image_name, 0,
                             save_imagedir_path, save_labeldir_path, resize, show, coordinates, only_save_have_box)

    cv2.destroyAllWindows()
    # 如果labels不为空且为检测一张图片时,返回单张图的目标框数据
    if not os.path.isdir(test_data_path):
        return labels


class Connect():
    def __init__(self, overlap, iou_thres, windowSize=None, rowcol=None, label_names=None):

        if not ((windowSize or rowcol) and not (windowSize and rowcol)):
            raise Exception('windowSize and rowcol must Only one can be defined')
        self.windowSize = windowSize  # (width, height)
        self.rowcol = rowcol
        self.overlap = overlap
        self.iou_thres = iou_thres
        self.label_names = label_names

    def showConnectImage(self, imagePath, txtDirPath, notebook=False, title=None, subtitle=None):
        image = cv2.imread(imagePath)
        image_name = imagePath.split('/')[-1]
        Width, Height = image.shape[1], image.shape[0]

        if self.rowcol:
            windowSize = slidingWindowCrop.ranksGetWindowSize(self.rowcol, (Width, Height), self.overlap)
        else:
            windowSize = self.windowSize
        labels = getAnchor(image, image_name, txtDirPath, sliceWidth=windowSize[0], sliceHeight=windowSize[1],
                           overlap=self.overlap, iou_thres=self.iou_thres, )

        plot_boxes(image, labels, name=image_name, label_names=self.label_names, show=True, wait=0)

        return visualAnalysis(labels[:, 0].tolist(), label_names=self.label_names, notebook=notebook, title=title,
                              subtitle=subtitle)

    def saveConnectImageAndTxt(self, imagePath, txtDirPath, savePath, coordinates='yolo',
                               resize=None, show=False, only_save_have_box=False):
        if savePath:
            # 如果不存在文件夾则创建
            if not os.path.exists(savePath):
                os.makedirs(savePath)
            imagesfile = os.path.join(savePath, 'images')
            labelsfile = os.path.join(savePath, 'labels')

            # 如果文件夹不存在则创建
            if not os.path.exists(labelsfile):
                os.makedirs(labelsfile)
            if not os.path.exists(imagesfile):
                os.makedirs(imagesfile)

        connectImage(imagePath, txtDirPath, save_imagedir_path=imagesfile, save_labeldir_path=labelsfile,
                     windowSize=self.windowSize, overlap=self.overlap, iou_thres=self.iou_thres, resize=resize,
                     show=show, label_names=self.label_names, only_save_have_box=only_save_have_box,
                     coordinates=coordinates, rowcol=self.rowcol)

    def saveConnectImage(self, imagePath, txtDirPath, saveImagePath,
                         resize=None, show=False, only_save_have_box=False):
        # 如果文件夹不存在则创建
        if not os.path.exists(saveImagePath):
            os.makedirs(saveImagePath)

        connectImage(imagePath, txtDirPath, save_imagedir_path=saveImagePath,
                     windowSize=self.windowSize, overlap=self.overlap, iou_thres=self.iou_thres,
                     resize=resize, show=show, label_names=self.label_names,
                     only_save_have_box=only_save_have_box, rowcol=self.rowcol)

    def saveConnectTxt(self, imagePath, txtDirPath, saveTxtPath, coordinates='yolo', show=False, ):
        # 如果文件夹不存在则创建
        if not os.path.exists(saveTxtPath):
            os.makedirs(saveTxtPath)

        connectImage(imagePath, txtDirPath, save_labeldir_path=saveTxtPath,
                     windowSize=self.windowSize, overlap=self.overlap, iou_thres=self.iou_thres,
                     show=show, label_names=self.label_names, coordinates=coordinates, rowcol=self.rowcol)


# 可视化分析
def visualAnalysis(labels, label_names=None, title=None, subtitle=None, notebook=False):
    """传入图片名字(作为标题)、标签"""
    data = pd.DataFrame(labels)
    # 训练标签转换为虫子名称
    data.loc[:, 0] = list(map(lambda x: label_names[x] if label_names else x, data.loc[:, 0]))
    # 统计数量
    data = data.groupby(data.loc[:, 0]).size()
    data_x, data_y = data.index.tolist(), data.values.tolist()

    bar = Bar()
    bar.add_xaxis(data_x)
    bar.add_yaxis('数量', data_y, category_gap="70%", )
    bar.set_global_opts(title_opts=opts.TitleOpts(title=title, subtitle=subtitle),
                        legend_opts=opts.LegendOpts(is_show=False, pos_bottom=0, pos_left=0))
    bar.set_series_opts(label_opts=opts.LabelOpts(position='top'))  # 水平直方图时position指定right

    pie = Pie()
    pie.add('数量', [x for x in zip(data_x, data_y)], radius=['30%', '48%'], rosetype='radius', center=['72%', '58%'])
    # rosetype可选area,radius,None
    pie.set_global_opts(title_opts=opts.TitleOpts(title=title),
                        legend_opts=opts.LegendOpts(pos_top='15%', pos_left='50%'))
    # formatter中 a表示data_pair,b表示类别名,c表示类别数量,d表示百分数
    pie.set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{d}%\n数量:{c}', position='outside'))

    grid = Grid(init_opts=opts.InitOpts(width='900px', height='550px'))
    grid.add(bar, grid_opts=opts.GridOpts(pos_left='0%', pos_right='57%', pos_top='20%', pos_bottom='20%'))
    grid.add(pie, grid_opts=opts.GridOpts(pos_left='75%', pos_right='70%', ))
    if notebook:
        return grid.render_notebook()
    else:
        return grid.render()
# 以下为作者测试所用,可复制修改参数为自己的文件路径等
if __name__ == '__main__':
    bug = {0: '大螟', 1: '二化螟', 2: '稻纵卷叶螟', 3: '白背飞虱', 4: '褐飞虱属', 5: '地老虎', 6: '蝼蛄', 7: '粘虫',
           8: '草地螟', 9: '甜菜夜蛾', 10: '黄足猎蝽', 11: '八点灰灯蛾', 12: '棉铃虫', 13: '二点委夜蛾', 14: '甘蓝夜蛾',
           15: '蟋蟀', 16: '黄毒蛾', 17: '稻螟蛉', 18: '紫条尺蛾', 19: '水螟蛾', 20: '线委夜蛾', 21: '甜菜白带野螟', 22: '歧角螟',
           23: '瓜绢野螟', 24: '豆野螟', 25: '石蛾', 26: '大黑鳃金龟', 27: '干纹冬夜蛾'}
    connect = Connect(rowcol=(4, 4), overlap=0.5, iou_thres=0.35, label_names=bug)
    connect = Connect(windowSize=(2200, 1900), overlap=0.5, iou_thres=0.35, label_names=bug)
    render_html = connect.showConnectImage('images/00295.jpg', 'la', )
    print('浏览器打开:', render_html)

    connect.saveConnectImageAndTxt('images', 'la', 'Result', show=True, coordinates='yolo', resize=None,
                             only_save_have_box=False)

一、初始化拼接对象

长图目标检测_长图目标检测

二、展示拼接效果

长图目标检测_目标检测_02

该函数可输入图片或者图片文件夹路径,展示拼接结果,若为单张图片则返回对单张图片预测结果的echarts分析图

长图目标检测_开源_03

 三、visualAnalys函数介绍

        作者封装了一个echats图的函数方法,用于统计单张图片的目标框,一般大分辨率图像中包含目标数量也较多,因此绘制统计图便于分析。

# 可视化分析
def visualAnalysis(labels, label_names=None, title=None, subtitle=None, notebook=False):
    data = pd.DataFrame(labels)
    # 训练标签转换为虫子名称
    data.loc[:, 0] = list(map(lambda x: label_names[x] if label_names else x, data.loc[:, 0]))
    # 统计数量
    data = data.groupby(data.loc[:, 0]).size()
    data_x, data_y = data.index.tolist(), data.values.tolist()

    bar = Bar()
    bar.add_xaxis(data_x)
    bar.add_yaxis('数量', data_y, category_gap="70%", )
    bar.set_global_opts(title_opts=opts.TitleOpts(title=title, subtitle=subtitle),
                        legend_opts=opts.LegendOpts(is_show=False, pos_bottom=0, pos_left=0))
    bar.set_series_opts(label_opts=opts.LabelOpts(position='top'))  # 水平直方图时position指定right

    pie = Pie()
    pie.add('数量', [x for x in zip(data_x, data_y)], radius=['30%', '48%'], rosetype='radius', center=['72%', '58%'])
    # rosetype可选area,radius,None
    pie.set_global_opts(title_opts=opts.TitleOpts(title=title),
                        legend_opts=opts.LegendOpts(pos_top='15%', pos_left='50%'))
    # formatter中 a表示data_pair,b表示类别名,c表示类别数量,d表示百分数
    pie.set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{d}%\n数量:{c}', position='outside'))

    grid = Grid(init_opts=opts.InitOpts(width='900px', height='550px'))
    grid.add(bar, grid_opts=opts.GridOpts(pos_left='0%', pos_right='57%', pos_top='20%', pos_bottom='20%'))
    grid.add(pie, grid_opts=opts.GridOpts(pos_left='75%', pos_right='70%', ))
    if notebook:
        return grid.render_notebook()
    else:
        return grid.render()

长图目标检测_子图_04

长图目标检测_子图_05

四、保存拼接结果

长图目标检测_python_06

 

长图目标检测_python_07

长图目标检测_长图目标检测_08

 作者文件展示:

原图文件: 

长图目标检测_python_09

子图标签文件:

长图目标检测_开源_10

 

长图目标检测_开源_11

保存结果文件:

长图目标检测_目标检测_12

 

长图目标检测_长图目标检测_13

子图标签汇总到原图上的结果展示如下:

长图目标检测_python_14

 

长图目标检测_长图目标检测_15

 在目标检测过程中对高分辨率图像进行滑动窗口切图可以很好解决大分辨率小目标图像的识别问题,希望作者的程序可以帮你便捷地完成项目。