#本质 统计每个像素灰度出现的概率
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('ruonan.jpg',1)
Info = img.shape
height = Info[0]
width = Info[1]
count_b = np.zeros(256,np.float)
count_g = np.zeros(256,np.float)
count_r = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
index_b = int(b)
index_g = int(g)
index_r = int(r)
count_b[index_b] = count_b[index_b]+1
count_g[index_g] = count_g[index_g]+1
count_r[index_r] = count_r[index_r]+1
for i in range(0,256):
count_b[i] = count_b[i]/(height*width)
count_g[i] = count_g[i]/(height*width)
count_r[i] = count_r[i]/(height*width)
x = np.linspace(0,255,256)
y1 = count_b
y2 = count_g
y3 = count_r
plt.figure()
plt.bar(x,y1,0.9,alpha=1,color='b')#占宽比90%
plt.figure()
plt.bar(x,y2,0.9,alpha=1,color='g')#占宽比90%
plt.figure()
plt.bar(x,y3,0.9,alpha=1,color='r')#占宽比90%
plt.show()
cv2.waitKey(0)
33_彩色图均衡化源代码
原创wx5c808bf9b561a ©著作权
©著作权归作者所有:来自51CTO博客作者wx5c808bf9b561a的原创作品,请联系作者获取转载授权,否则将追究法律责任
上一篇:12_图像的上下镜像
下一篇:24_#浮雕效果
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
灰度图转伪彩色图代码
主要功能是使灰度图中 亮度越高的像素点,在伪彩色图中对应的点越趋向于 红色
灰度图 scala 像素点