播放思路来自:https://www.instructables.com/Play-Video-With-ESP32/
参考代码:https://github.com/moononournation/RGB565_video
我参考的是这个工程:
但是这里教程里面使用的是Arduino_GFX Library库来驱动TFT lcd,存在两个问题:
1,lvgl采用Arduino_GFX Library库来移植到TFTlcd上时,显示会畸变,颜色不对(我的是这样的)。
2,所以要使用lvgl,得用TFTe_SPI库,但是该参考项目是基于Arduino_GFX Library库的,我们的移植过来。
视频格式采用MJPEG,这样更快点,视频支持的帧率会更高。
视频播放是在前面博客搭建的框架下加入的。
移植:
1,参考前面的工程代码,需要在display.h,display.c中加入一些东西,其实就是将TFT_eSPI *tft实例声明一下,让外部文件也可以用,这是因为在lvgl中播放视频的话,参考前面博客讲解的思路,处理很慢,视频估计就几帧的帧率,所以需要直接去操控TFT_eSPI *tft,增加刷新速度,以此增加视频帧率。代码如下红色方框所示:
.c文件:
.h文件:
2,如下图所示,参考工程里面除了arduino文件外,还有三个代码,他们就是实现视频播放,视频格式解码的。
先贴上里面的源代码:
MjpegClass.h
#ifndef _MJPEGCLASS_H_
#define _MJPEGCLASS_H_
#pragma GCC optimize("O3")
#define READ_BUFFER_SIZE 2048
#include <esp_heap_caps.h>
#include <FS.h>
#include <Arduino_TFT.h>
#include "tjpgdClass.h"
class MjpegClass
{
public:
bool setup(File input, uint8_t *mjpeg_buf, Arduino_TFT *tft, bool multiTask)
{
_input = input;
_mjpeg_buf = mjpeg_buf;
_tft = tft;
_multiTask = multiTask;
_tft_width = gfx->width();
_tft_height = gfx->height();
if (!_read_buf)
{
_read_buf = (uint8_t *)malloc(READ_BUFFER_SIZE);
}
for (int i = 0; i < 2; ++i)
{
if (!_out_bufs[i])
{
_out_bufs[i] = (uint8_t *)heap_caps_malloc(_tft_width * 48 * 2, MALLOC_CAP_DMA);
}
}
_out_buf = _out_bufs[0];
if (_multiTask)
{
_jdec.multitask_begin();
}
return true;
}
bool readMjpegBuf()
{
if (_inputindex == 0)
{
_buf_read = _input.read(_read_buf, READ_BUFFER_SIZE);
_inputindex += _buf_read;
}
_mjpeg_buf_offset = 0;
int i = 3;
bool found_FFD9 = false;
if (_buf_read > 0)
{
i = 3;
while ((_buf_read > 0) && (!found_FFD9))
{
if ((_mjpeg_buf_offset > 0) && (_mjpeg_buf[_mjpeg_buf_offset - 1] == 0xFF) && (_read_buf[0] == 0xD9)) // JPEG trailer
{
found_FFD9 = true;
}
else
{
while ((i < _buf_read) && (!found_FFD9))
{
if ((_read_buf[i] == 0xFF) && (_read_buf[i + 1] == 0xD9)) // JPEG trailer
{
found_FFD9 = true;
++i;
}
++i;
}
}
// Serial.printf("i: %d\n", i);
memcpy(_mjpeg_buf + _mjpeg_buf_offset, _read_buf, i);
_mjpeg_buf_offset += i;
size_t o = _buf_read - i;
if (o > 0)
{
// Serial.printf("o: %d\n", o);
memcpy(_read_buf, _read_buf + i, o);
_buf_read = _input.read(_read_buf + o, READ_BUFFER_SIZE - o);
_inputindex += _buf_read;
_buf_read += o;
// Serial.printf("_buf_read: %d\n", _buf_read);
}
else
{
_buf_read = _input.read(_read_buf, READ_BUFFER_SIZE);
_inputindex += _buf_read;
}
i = 0;
}
if (found_FFD9)
{
return true;
}
}
return false;
}
bool drawJpg()
{
_fileindex = 0;
_remain = _mjpeg_buf_offset;
TJpgD::JRESULT jres = _jdec.prepare(jpgRead, this);
if (jres != TJpgD::JDR_OK)
{
Serial.printf("prepare failed! %d\r\n", jres);
return false;
}
_out_width = std::min<int32_t>(_jdec.width, _tft_width);
_jpg_x = (_tft_width - _jdec.width) >> 1;
if (0 > _jpg_x)
{
_off_x = -_jpg_x;
_jpg_x = 0;
}
else
{
_off_x = 0;
}
_out_height = std::min<int32_t>(_jdec.height, _tft_height);
_jpg_y = (_tft_height - _jdec.height) >> 1;
if (0 > _jpg_y)
{
_off_y = -_jpg_y;
_jpg_y = 0;
}
else
{
_off_y = 0;
}
if (_multiTask)
{
jres = _jdec.decomp_multitask(jpgWrite16, jpgWriteRow);
}
else
{
jres = _jdec.decomp(jpgWrite16, jpgWriteRow);
}
if (jres != TJpgD::JDR_OK)
{
Serial.printf("decomp failed! %d\r\n", jres);
return false;
}
return true;
}
private:
File _input;
uint8_t *_read_buf;
uint8_t *_mjpeg_buf;
int32_t _mjpeg_buf_offset = 0;
Arduino_TFT *_tft;
bool _multiTask;
uint8_t *_out_bufs[2];
uint8_t *_out_buf;
TJpgD _jdec;
int32_t _inputindex = 0;
int32_t _buf_read;
int32_t _remain = 0;
uint32_t _fileindex;
int32_t _tft_width;
int32_t _tft_height;
int32_t _out_width;
int32_t _out_height;
int32_t _off_x;
int32_t _off_y;
int32_t _jpg_x;
int32_t _jpg_y;
static uint32_t jpgRead(TJpgD *jdec, uint8_t *buf, uint32_t len)
{
MjpegClass *me = (MjpegClass *)jdec->device;
if (len > me->_remain)
len = me->_remain;
if (buf)
{
memcpy(buf, (const uint8_t *)me->_mjpeg_buf + me->_fileindex, len);
}
me->_fileindex += len;
me->_remain -= len;
return len;
}
// for 16bit color panel
static uint32_t jpgWrite16(TJpgD *jdec, void *bitmap, TJpgD::JRECT *rect)
{
MjpegClass *me = (MjpegClass *)jdec->device;
uint16_t *dst = (uint16_t *)me->_out_buf;
uint_fast16_t x = rect->left;
uint_fast16_t y = rect->top;
uint_fast16_t w = rect->right + 1 - x;
uint_fast16_t h = rect->bottom + 1 - y;
uint_fast16_t outWidth = me->_out_width;
uint_fast16_t outHeight = me->_out_height;
uint8_t *src = (uint8_t *)bitmap;
uint_fast16_t oL = 0, oR = 0;
if (rect->right < me->_off_x)
return 1;
if (x >= (me->_off_x + outWidth))
return 1;
if (rect->bottom < me->_off_y)
return 1;
if (y >= (me->_off_y + outHeight))
return 1;
if (me->_off_y > y)
{
uint_fast16_t linesToSkip = me->_off_y - y;
src += linesToSkip * w * 3;
h -= linesToSkip;
}
if (me->_off_x > x)
{
oL = me->_off_x - x;
}
if (rect->right >= (me->_off_x + outWidth))
{
oR = (rect->right + 1) - (me->_off_x + outWidth);
}
int_fast16_t line = (w - (oL + oR));
dst += oL + x - me->_off_x;
src += oL * 3;
do
{
int i = 0;
do
{
uint_fast8_t r8 = src[i * 3 + 0] & 0xF8;
uint_fast8_t g8 = src[i * 3 + 1];
uint_fast8_t b5 = src[i * 3 + 2] >> 3;
r8 |= g8 >> 5;
g8 &= 0x1C;
b5 = (g8 << 3) + b5;
dst[i] = r8 | b5 << 8;
} while (++i != line);
dst += outWidth;
src += w * 3;
} while (--h);
return 1;
}
static uint32_t jpgWriteRow(TJpgD *jdec, uint32_t y, uint32_t h)
{
static int flip = 0;
MjpegClass *me = (MjpegClass *)jdec->device;
if (y == 0)
{
me->_tft->setAddrWindow(me->_jpg_x, me->_jpg_y, jdec->width, jdec->height);
}
me->_tft->startWrite();
me->_tft->writeBytes((uint8_t *)me->_out_buf, jdec->width * h * 2);
me->_tft->endWrite();
flip = !flip;
me->_out_buf = me->_out_bufs[flip];
return 1;
}
};
#endif // _MJPEGCLASS_H_
tjpgdClass.cpp
/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor R0.01c (C)ChaN, 2019
/-----------------------------------------------------------------------------/
/ The TJpgDec is a generic JPEG decompressor module for tiny embedded systems.
/ This is a free software that opened for education, research and commercial
/ developments under license policy of following terms.
/
/ Copyright (C) 2019, ChaN, all right reserved.
/
/ * The TJpgDec module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-----------------------------------------------------------------------------/
/ Oct 04, 2011 R0.01 First release.
/ Feb 19, 2012 R0.01a Fixed decompression fails when scan starts with an escape seq.
/ Sep 03, 2012 R0.01b Added JD_TBLCLIP option.
/ Mar 16, 2019 R0.01c Supprted stdint.h.
/----------------------------------------------------------------------------/
/ May 2019 ~ July 2020 Tweak for ESP32 ( modify by lovyan03 )
/----------------------------------------------------------------------------*/
#pragma GCC optimize ("O3")
#include "tjpgdClass.h"
#include <string.h> // for memcpy memset
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/queue.h>
/*-----------------------------------------------*/
/* Zigzag-order to raster-order conversion table */
/*-----------------------------------------------*/
#define ZIG(n) Zig[n]
static const uint8_t Zig[64] = { /* Zigzag-order to raster-order conversion table */
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
};
/*-------------------------------------------------*/
/* Input scale factor of Arai algorithm */
/* (scaled up 16 bits for fixed point operations) */
/*-------------------------------------------------*/
#define IPSF(n) Ipsf[n]
static const uint16_t Ipsf[64] = { /* See also aa_idct.png */
(uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
(uint16_t)(1.38704*8192), (uint16_t)(1.92388*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.08979*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.38268*8192),
(uint16_t)(1.30656*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.70711*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.36048*8192),
(uint16_t)(1.17588*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.38268*8192), (uint16_t)(1.17588*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.32442*8192),
(uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
(uint16_t)(0.78570*8192), (uint16_t)(1.08979*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.61732*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.21677*8192),
(uint16_t)(0.54120*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.29290*8192), (uint16_t)(0.14932*8192),
(uint16_t)(0.27590*8192), (uint16_t)(0.38268*8192), (uint16_t)(0.36048*8192), (uint16_t)(0.32442*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.21678*8192), (uint16_t)(0.14932*8192), (uint16_t)(0.07612*8192)
};
/*---------------------------------------------*/
/* Output bayer pattern table */
/*---------------------------------------------*/
static const int8_t Bayer[8][32] = {
{ 0, 4, 1, 5, 0, 4, 1, 5, -2, 2,-1, 3, -2, 2,-1, 3, 1, 5, 0, 4, 1, 5, 0, 4, -1, 3,-2, 2, -1, 3,-2, 2},
{ 1, 5, 0, 4, 1, 5, 0, 4, -1, 3,-2, 2, -1, 3,-2, 2, 0, 4, 1, 5, 0, 4, 1, 5, -2, 2,-1, 3, -2, 2,-1, 3},
{ 2,-1, 3,-2, 2,-1, 3,-2, 5, 0, 4, 1, 5, 0, 4, 1, 3,-2, 2,-1, 3,-2, 2,-1, 4, 1, 5, 0, 4, 1, 5, 0},
{ 3,-2, 2,-1, 3,-2, 2,-1, 4, 1, 5, 0, 4, 1, 5, 0, 2,-1, 3,-2, 2,-1, 3,-2, 5, 0, 4, 1, 5, 0, 4, 1},
{ 4, 1, 5, 0, 4, 1, 5, 0, 2,-1, 3,-2, 2,-1, 3,-2, 5, 0, 4, 1, 5, 0, 4, 1, 3,-2, 2,-1, 3,-2, 2,-1},
{ 5, 0, 4, 1, 5, 0, 4, 1, 3,-2, 2,-1, 3,-2, 2,-1, 4, 1, 5, 0, 4, 1, 5, 0, 2,-1, 3,-2, 2,-1, 3,-2},
{-2, 2,-1, 3, -2, 2,-1, 3, 1, 5, 0, 4, 1, 5, 0, 4, -1, 3,-2, 2, -1, 3,-2, 2, 0, 4, 1, 5, 0, 4, 1, 5},
{-1, 3,-2, 2, -1, 3,-2, 2, 0, 4, 1, 5, 0, 4, 1, 5, -2, 2,-1, 3, -2, 2,-1, 3, 1, 5, 0, 4, 1, 5, 0, 4}
};
/*---------------------------------------------*/
/* Conversion table for fast clipping process */
/*---------------------------------------------*/
#if JD_TBLCLIP
#define BYTECLIP(v) Clip8[(uint16_t)(v) & 0x3FF]
static const uint8_t Clip8[1024] = {
/* 0..255 */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
/* 256..511 */
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
/* -512..-257 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* -256..-1 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#else /* JD_TBLCLIP */
inline uint_fast8_t BYTECLIP (
int32_t val
)
{
if (val < 0) val = 0;
else if (val > 255) val = 255;
return val;
}
#endif
/*-----------------------------------------------------------------------*/
/* Allocate a memory block from memory pool */
/*-----------------------------------------------------------------------*/
static void* alloc_pool ( /* Pointer to allocated memory block (NULL:no memory available) */
TJpgD* jd, /* Pointer to the decompressor object */
uint_fast16_t nd /* Number of bytes to allocate */
)
{
char *rp = 0;
nd = (nd + 3) & ~3; /* Align block size to the word boundary */
if (jd->sz_pool >= nd) {
jd->sz_pool -= nd;
rp = (char*)jd->pool; /* Get start of available memory pool */
jd->pool = (void*)(rp + nd); /* Allocate requierd bytes */
}
return (void*)rp; /* Return allocated memory block (NULL:no memory to allocate) */
}
/*-----------------------------------------------------------------------*/
/* Create de-quantization and prescaling tables with a DQT segment */
/*-----------------------------------------------------------------------*/
static int create_qt_tbl ( /* 0:OK, !0:Failed */
TJpgD* jd, /* Pointer to the decompressor object */
const uint8_t* data, /* Pointer to the quantizer tables */
uint_fast16_t ndata /* Size of input data */
)
{
uint_fast8_t d, z;
int32_t *pb;
do { /* Process all tables in the segment */
d = *data++; /* Get table property */
if (d & 0xF0) return TJpgD::JDR_FMT1; /* Err: not 8-bit resolution */
pb = (int32_t*)alloc_pool(jd, 64 * sizeof (int32_t));/* Allocate a memory block for the table */
if (!pb) return TJpgD::JDR_MEM1; /* Err: not enough memory */
jd->qttbl[d & 3] = pb; /* Register the table */
for (size_t i = 0; i < 64; ++i) { /* Load the table */
z = ZIG(i); /* Zigzag-order to raster-order conversion */
pb[z] = (int32_t)((uint32_t)data[i] * IPSF(z)); /* Apply scale factor of Arai algorithm to the de-quantizers */
}
data += 64;
} while (ndata -= 65);
return TJpgD::JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Create huffman code tables with a DHT segment */
/*-----------------------------------------------------------------------*/
static int create_huffman_tbl ( /* 0:OK, !0:Failed */
TJpgD* jd, /* Pointer to the decompressor object */
const uint8_t* data, /* Pointer to the packed huffman tables */
uint_fast16_t ndata /* Size of input data */
)
{
uint_fast16_t d, b, np, cls, num, hc;
uint8_t *pb, *pd;
uint_fast16_t *ph;
do { /* Process all tables in the segment */
d = *data++; /* Get table number and class */
if (d & 0xEE) return TJpgD::JDR_FMT1; /* Err: invalid class/number */
cls = d >> 4; num = d & 0x0F; /* class = dc(0)/ac(1), table number = 0/1 */
pb = (uint8_t*)alloc_pool(jd, 16); /* Allocate a memory block for the bit distribution table */
if (!pb) return TJpgD::JDR_MEM1; /* Err: not enough memory */
jd->huffbits[num][cls] = pb - 1;
np = 0;
for (size_t i = 0; i < 16; ++i) { /* Load number of patterns for 1 to 16-bit code */
np += (pb[i] = data[i]); /* Get sum of code words for each code */
}
ph = (uint_fast16_t*)alloc_pool(jd, (np * sizeof (uint_fast16_t)));/* Allocate a memory block for the code word table */
if (!ph) return TJpgD::JDR_MEM1; /* Err: not enough memory */
jd->huffcode[num][cls] = ph - 1;
hc = 0;
for (size_t i = 0; i < 16; ++i) { /* Re-build huffman code word table */
b = pb[i];
while (b--) *ph++ = hc++;
hc <<= 1;
}
pd = (uint8_t*)alloc_pool(jd, np); /* Allocate a memory block for the decoded data */
if (!pd) return TJpgD::JDR_MEM1; /* Err: not enough memory */
jd->huffdata[num][cls] = pd - 1;
memcpy(pd, data += 16, np); /* Load decoded data corresponds to each code ward */
data += np;
} while (ndata -= 17 + np);
return TJpgD::JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Extract N bits from input stream */
/*-----------------------------------------------------------------------*/
static inline int_fast16_t bitext ( /* >=0: extracted data, <0: error code */
TJpgD* jd, /* Pointer to the decompressor object */
int_fast16_t nbit /* Number of bits to extract (1 to 11) */
)
{
uint8_t *dp = jd->dptr; /* Bit mask, number of data available, read ptr */
uint_fast8_t s = *dp;
uint_fast8_t msk = jd->dmsk;
uint_fast16_t v = 0;
if (msk) {
if (msk >= nbit) {
msk -= nbit;
jd->dmsk = msk;
return (s >> msk) & ((1 << nbit) - 1); /* Get bits */
}
nbit -= msk;
v = (s & ((1 << msk) - 1)) << nbit; /* Get bits */
}
uint8_t *dpend = jd->dpend;
for (;;) {
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP; /* Err: read error or wrong stream termination */
}
s = *dp; /* Get next data byte */
if (s == 0xFF) { /* Is start of flag sequence? */
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP; /* Err: read error or wrong stream termination */
}
if (*dp != 0) return 0 - (int_fast16_t)TJpgD::JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = s; /* The flag is a data 0xFF */
}
if (8 >= nbit) {
msk = 8 - nbit;
jd->dmsk = msk; jd->dptr = dp;
return v + ((s >> msk) & ((1 << nbit) - 1)); /* Get bits */
}
nbit -= 8;
v |= s << nbit; /* Get bits */
}
}
/*-----------------------------------------------------------------------*/
/* Extract a huffman decoded data from input stream */
/*-----------------------------------------------------------------------*/
static int_fast16_t huffext ( /* >=0: decoded data, <0: error code */
TJpgD* jd, /* Pointer to the decompressor object */
const uint8_t* hbits, /* Pointer to the bit distribution table */
const uint_fast16_t* hcode, /* Pointer to the code word table */
const uint8_t* hdata /* Pointer to the data table */
)
{
uint_fast8_t msk = jd->dmsk;
uint8_t *dpend = jd->dpend; /* Bit mask, number of data available, read ptr */
uint8_t *dp = jd->dptr;
uint_fast8_t s = *dp;
uint_fast8_t v = 0;
uint_fast8_t bl = 16; /* Max code length */
for (;;) {
if (!msk) { /* Next byte? */
msk = 8; /* Read from MSB */
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP; /* Err: read error or wrong stream termination */
}
s = *dp; /* Get next data byte */
if (s == 0xFF) { /* Is start of flag sequence? */
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
if (dp == dpend) return 0 - (int_fast16_t)TJpgD::JDR_INP; /* Err: read error or wrong stream termination */
}
if (*dp != 0) return 0 - (int_fast16_t)TJpgD::JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = s; /* The flag is a data 0xFF */
}
}
do {
v = (v << 1) + ((s >> (--msk)) & 1); /* Get a bit */
uint_fast8_t nd = *++hbits;
if (nd) {
do {
++hdata;
if (v == *++hcode) goto huffext_match; /* Matched? */
} while (--nd); /* Search the code word in this bit length */
}
if (!--bl) return 0 - (int_fast16_t)TJpgD::JDR_FMT1; /* Err: code not found (may be collapted data) */
} while (msk);
}
huffext_match:
jd->dmsk = msk;
jd->dptr = dp;
return *hdata; /* Return the decoded data */
}
/*-----------------------------------------------------------------------*/
/* Apply Inverse-DCT in Arai Algorithm (see also aa_idct.png) */
/*-----------------------------------------------------------------------*/
static void block_idct (
int32_t* src, /* Input block data (de-quantized and pre-scaled for Arai Algorithm) */
uint8_t* dst /* Pointer to the destination to store the block as byte array */
)
{
const int32_t M13 = (int32_t)(1.41421*256), M4 = (int32_t)(2.61313*256);
const float F2 = 1.08239, F5 = 1.84776;
int32_t v0, v1, v2, v3, v4, v5, v6, v7;
int32_t t10, t11, t12, t13;
/* Process columns */
for (size_t i = 0; i < 8; ++i) {
/* Get and Process the even elements */
t12 = src[8 * 0];
t10 = src[8 * 4];
t10 += t12;
t12 = (t12 << 1) - t10;
t11 = src[8 * 2];
t13 = src[8 * 6];
t13 += t11;
t11 = (t11 << 1) - t13;
t11 = t11 * M13 >> 8;
t11 = t11 - t13;
v0 = t10 + t13;
v3 = t10 - t13;
v1 = t12 + t11;
v2 = t12 - t11;
/* Get and Process the odd elements */
v4 = src[8 * 1];
v5 = src[8 * 7];
v5 += v4;
v4 = (v4 << 1) - v5;
v7 = src[8 * 3];
v6 = src[8 * 5];
v6 -= v7;
v7 = (v7 << 1) + v6;
v7 += v5;
t13 = v4 + v6;
t13 *= F5;
v6 = v6 * M4 >> 8;
v6 += v7;
v6 = t13 - v6;
v5 = (v5 << 1) - v7;
v5 = v5 * M13 >> 8;
v5 -= v6;
v4 *= F2;
v4 += v5;
v4 = t13 - v4;
/* Write-back transformed values */
src[8 * 0] = v0 + v7;
src[8 * 7] = v0 - v7;
src[8 * 1] = v1 + v6;
src[8 * 6] = v1 - v6;
src[8 * 2] = v2 + v5;
src[8 * 5] = v2 - v5;
src[8 * 3] = v3 + v4;
src[8 * 4] = v3 - v4;
++src; /* Next column */
}
/* Process rows */
src -= 8;
for (size_t i = 0; i < 8; ++i) {
/* Get and Process the even elements */
t12 = src[0] + (128L << 8); /* remove DC offset (-128) here */
t10 = src[4];
t10 += t12;
t12 = (t12 << 1) - t10;
t11 = src[2];
t13 = src[6];
t13 += t11;
t11 = (t11 << 1) - t13;
t11 = t11 * M13 >> 8;
t11 -= t13;
v0 = t10 + t13;
v3 = t10 - t13;
v1 = t12 + t11;
v2 = t12 - t11;
/* Get and Process the odd elements */
v4 = src[1];
v5 = src[7];
v5 += v4;
v4 = (v4 << 1) - v5;
v7 = src[3];
v6 = src[5];
v6 -= v7;
v7 = (v7 << 1) + v6;
v7 += v5;
t13 = v4 + v6;
t13 *= F5;
v6 = v6 * M4 >> 8;
v6 += v7;
v6 = t13 - v6;
v5 = (v5 << 1) - v7;
v5 = v5 * M13 >> 8;
v5 -= v6;
v4 *= F2;
v4 += v5;
v4 = t13 - v4;
/* Descale the transformed values 8 bits and output */
dst[0] = BYTECLIP((v0 + v7) >> 8);
dst[7] = BYTECLIP((v0 - v7) >> 8);
dst[1] = BYTECLIP((v1 + v6) >> 8);
dst[6] = BYTECLIP((v1 - v6) >> 8);
dst[2] = BYTECLIP((v2 + v5) >> 8);
dst[5] = BYTECLIP((v2 - v5) >> 8);
dst[3] = BYTECLIP((v3 + v4) >> 8);
dst[4] = BYTECLIP((v3 - v4) >> 8);
dst += 8;
src += 8; /* Next row */
}
}
/*-----------------------------------------------------------------------*/
/* Load all blocks in the MCU into working buffer */
/*-----------------------------------------------------------------------*/
static TJpgD::JRESULT mcu_load (
TJpgD* jd, /* Pointer to the decompressor object */
uint8_t* bp, /* mcubuf */
int32_t* tmp /* Block working buffer for de-quantize and IDCT */
)
{
int_fast16_t b, d, e;
uint_fast8_t blk, nby, nbc, i, z;
const uint8_t *hb, *hd;
const uint_fast16_t *hc;
nby = jd->msx * jd->msy; /* Number of Y blocks (1, 2 or 4) */
nbc = 2; /* Number of C blocks (2) */
for (blk = 0; blk < nby + nbc; blk++) {
uint_fast8_t cmp = (blk < nby) ? 0 : blk - nby + 1; /* Component number 0:Y, 1:Cb, 2:Cr */
uint_fast8_t id = cmp ? 1 : 0; /* Huffman table ID of the component */
/* Extract a DC element from input stream */
hb = jd->huffbits[id][0]; /* Huffman table for the DC element */
hc = jd->huffcode[id][0];
hd = jd->huffdata[id][0];
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded data (bit length) */
if (b < 0) return (TJpgD::JRESULT)(-b); /* Err: invalid code or input */
d = jd->dcv[cmp]; /* DC value of previous block */
if (b) { /* If there is any difference from previous block */
e = bitext(jd, b); /* Extract data bits */
if (e < 0) return (TJpgD::JRESULT)(-e); /* Err: input */
b = 1 << (b - 1); /* MSB position */
if (!(e & b)) e -= (b << 1) - 1; /* Restore sign if needed */
d += e; /* Get current value */
jd->dcv[cmp] = d; /* Save current DC value for next block */
}
const int32_t *dqf = jd->qttbl[jd->qtid[cmp]]; /* De-quantizer table ID for this component */
tmp[0] = d * dqf[0] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
/* Extract following 63 AC elements from input stream */
memset(&tmp[1], 0, 4 * 63); /* Clear rest of elements */
hb = jd->huffbits[id][1]; /* Huffman table for the AC elements */
hc = jd->huffcode[id][1];
hd = jd->huffdata[id][1];
i = 1; /* Top of the AC elements */
do {
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded value (zero runs and bit length) */
if (b == 0) break; /* EOB? */
if (b < 0) return (TJpgD::JRESULT)(-b); /* Err: invalid code or input error */
i += b >> 4;
if (b &= 0x0F) { /* Bit length */
d = bitext(jd, b); /* Extract data bits */
if (d < 0) return (TJpgD::JRESULT)(-d);/* Err: input device */
b = 1 << (b - 1); /* MSB position */
if (!(d & b)) d -= (b << 1) - 1;/* Restore negative value if needed */
z = ZIG(i); /* Zigzag-order to raster-order converted index */
tmp[z] = d * dqf[z] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
}
} while (++i != 64); /* Next AC element */
block_idct(tmp, bp); /* Apply IDCT and store the block to the MCU buffer */
bp += 64; /* Next block */
}
return TJpgD::JDR_OK; /* All blocks have been loaded successfully */
}
/*-----------------------------------------------------------------------*/
/* Output an MCU: Convert YCrCb to RGB and output it in RGB form */
/*-----------------------------------------------------------------------*/
static TJpgD::JRESULT mcu_output (
TJpgD* jd, /* Pointer to the decompressor object */
uint8_t* mcubuf,
uint8_t* workbuf,
uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*), /* RGB output function */
uint_fast16_t x, /* MCU position in the image (left of the MCU) */
uint_fast16_t y /* MCU position in the image (top of the MCU) */
)
{
uint_fast16_t ix, iy, mx, my, rx, ry;
uint8_t *py, *pc;
TJpgD::JRECT rect;
mx = jd->msx * 8; my = jd->msy * 8; /* MCU size (pixel) */
rx = (x + mx <= jd->width) ? mx : jd->width - x; /* Output rectangular size (it may be clipped at right/bottom end) */
ry = (y + my <= jd->height) ? my : jd->height - y;
rect.left = x; rect.right = x + rx - 1; /* Rectangular area in the frame buffer */
rect.top = y; rect.bottom = y + ry - 1;
static constexpr float frr = 1.402;
static constexpr float fgr = 0.71414;
static constexpr float fgb = 0.34414;
static constexpr float fbb = 1.772;
/* Build an RGB MCU from discrete comopnents */
const int8_t* btbase = Bayer[jd->bayer];
const int8_t* btbl;
uint_fast8_t ixshift = (mx == 16);
uint_fast8_t iyshift = (my == 16);
iy = 0;
uint8_t* prgb = workbuf;
do {
btbl = &btbase[(iy & 3) << 3];
py = &mcubuf[((iy & 8) + iy) << 3];
pc = &mcubuf[((mx << iyshift) + (iy >> iyshift)) << 3];
ix = 0;
do {
do {
float cb = (pc[ 0] - 128); /* Get Cb/Cr component and restore right level */
float cr = (pc[64] - 128);
++pc;
/* Convert CbCr to RGB */
int32_t gg = fgb * cb + fgr * cr;
int32_t rr = frr * cr;
int32_t bb = fbb * cb;
int32_t yy = btbl[0] + py[0]; /* Get Y component */
prgb[0] = BYTECLIP(yy + rr);
prgb[1] = BYTECLIP(yy - gg);
prgb[2] = BYTECLIP(yy + bb);
if (ixshift) {
yy = btbl[1] + py[1]; /* Get Y component */
prgb[3] = BYTECLIP(yy + rr);
prgb[4] = BYTECLIP(yy - gg);
prgb[5] = BYTECLIP(yy + bb);
}
prgb += 3 << ixshift;
btbl += 1 << ixshift;
py += 1 << ixshift;
ix += 1 << ixshift;
} while (ix & 7);
btbl -= 8;
py += 64 - 8; /* Jump to next block if double block heigt */
} while (ix != mx);
} while (++iy != my);
if (rx < mx) {
uint8_t *s, *d;
s = d = (uint8_t*)workbuf;
rx *= 3;
mx *= 3;
for (size_t y = 1; y < ry; ++y) {
memcpy(d += rx, s += mx, rx); /* Copy effective pixels */
}
}
/* Output the RGB rectangular */
return outfunc(jd, workbuf, &rect) ? TJpgD::JDR_OK : TJpgD::JDR_INTR;
}
/*-----------------------------------------------------------------------*/
/* Process restart interval */
/*-----------------------------------------------------------------------*/
static TJpgD::JRESULT restart (
TJpgD* jd, /* Pointer to the decompressor object */
uint_fast16_t rstn /* Expected restert sequense number */
)
{
uint_fast16_t d;
uint8_t *dp, *dpend;
/* Discard padding bits and get two bytes from the input stream */
dp = jd->dptr; dpend = jd->dpend;
d = 0;
for (size_t i = 0; i < 2; i++) {
if (++dp == dpend) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf;
jd->dpend = dpend = dp + jd->infunc(jd, dp, TJPGD_SZBUF);
if (dp == dpend) return TJpgD::JDR_INP;
}
d = (d << 8) | *dp; /* Get a byte */
}
jd->dptr = dp; jd->dmsk = 0;
/* Check the marker */
if ((d & 0xFFD8) != 0xFFD0 || (d & 7) != (rstn & 7)) {
return TJpgD::JDR_FMT1; /* Err: expected RSTn marker is not detected (may be collapted data) */
}
/* Reset DC offset */
jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0;
return TJpgD::JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Analyze the JPEG image and Initialize decompressor object */
/*-----------------------------------------------------------------------*/
#define LDB_WORD(ptr) (uint16_t)(((uint16_t)*((uint8_t*)(ptr))<<8)|(uint16_t)*(uint8_t*)((ptr)+1))
TJpgD::JRESULT TJpgD::prepare (
uint32_t (*infunc)(TJpgD*, uint8_t*, uint32_t), /* JPEG strem input function */
void* dev /* I/O device identifier for the session */
)
{
uint8_t *seg;
uint_fast8_t b, marker;
uint_fast16_t i, len;
TJpgD::JRESULT rc;
static constexpr uint_fast16_t sz_pool = 3900;
static uint8_t pool[sz_pool];
this->pool = pool; /* Work memroy */
this->sz_pool = sz_pool; /* Size of given work memory */
this->infunc = infunc; /* Stream input function */
this->device = dev; /* I/O device identifier */
this->nrst = 0; /* No restart interval (default) */
inbuf = seg = dptr = (uint8_t*)alloc_pool(this, TJPGD_SZBUF); /* Allocate stream input buffer */
if (!seg) return TJpgD::JDR_MEM1;
uint32_t dctr = infunc(this, dptr, TJPGD_SZBUF);
seg = dptr;
if (dctr <= 2) return TJpgD::JDR_INP;/* Check SOI marker */
if (LDB_WORD(seg) != 0xFFD8) return TJpgD::JDR_FMT1; /* Err: SOI is not detected */
dptr += 2; dctr -= 2;
for (;;) {
/* Get a JPEG marker */
if (dctr < 4) {
if (4 > (TJPGD_SZBUF - (dptr - inbuf))) return TJpgD::JDR_MEM2;
dctr += infunc(this, dptr + dctr, 4);
if (dctr < 4) return TJpgD::JDR_INP;
}
seg = dptr;
dptr += 4;
dctr -= 4;
if (*seg++ != 0xFF) return TJpgD::JDR_FMT1;
marker = *(seg++); /* Marker */
len = LDB_WORD(seg); /* Length field */
if (len <= 2) return TJpgD::JDR_FMT1;
len -= 2; /* Content size excluding length field */
/* Load segment data */
if (dctr < len) {
if (len - dctr > (TJPGD_SZBUF - (dptr - inbuf))) return TJpgD::JDR_MEM2;
dctr += infunc(this, dptr + dctr, len - dctr);
if (dctr < len) return TJpgD::JDR_INP;
}
seg = dptr;
dptr += len;
dctr -= len;
switch (marker) {
case 0xC0: /* SOF0 (baseline JPEG) */
width = LDB_WORD(seg+3); /* Image width in unit of pixel */
height = LDB_WORD(seg+1); /* Image height in unit of pixel */
if (seg[5] != 3) return TJpgD::JDR_FMT3; /* Err: Supports only Y/Cb/Cr format */
/* Check three image components */
for (i = 0; i < 3; i++) {
b = seg[7 + 3 * i]; /* Get sampling factor */
if (!i) { /* Y component */
if (b != 0x11 && b != 0x22 && b != 0x21) { /* Check sampling factor */
return TJpgD::JDR_FMT3; /* Err: Supports only 4:4:4, 4:2:0 or 4:2:2 */
}
msx = b >> 4; msy = b & 15; /* Size of MCU [blocks] */
} else { /* Cb/Cr component */
if (b != 0x11) return TJpgD::JDR_FMT3; /* Err: Sampling factor of Cr/Cb must be 1 */
}
b = seg[8 + 3 * i]; /* Get dequantizer table ID for this component */
if (b > 3) return TJpgD::JDR_FMT3; /* Err: Invalid ID */
qtid[i] = b;
}
break;
case 0xDD: /* DRI */
/* Get restart interval (MCUs) */
nrst = LDB_WORD(seg);
break;
case 0xC4: /* DHT */
/* Create huffman tables */
rc = (TJpgD::JRESULT)create_huffman_tbl(this, seg, len);
if (rc) return rc;
break;
case 0xDB: /* DQT */
/* Create de-quantizer tables */
rc = (TJpgD::JRESULT)create_qt_tbl(this, seg, len);
if (rc) return rc;
break;
case 0xDA: /* SOS */
if (!width || !height) return TJpgD::JDR_FMT1; /* Err: Invalid image size */
if (seg[0] != 3) return TJpgD::JDR_FMT3; /* Err: Supports only three color components format */
/* Check if all tables corresponding to each components have been loaded */
for (i = 0; i < 3; i++) {
b = seg[2 + 2 * i]; /* Get huffman table ID */
if (b != 0x00 && b != 0x11) return TJpgD::JDR_FMT3; /* Err: Different table number for DC/AC element */
b = i ? 1 : 0;
if (!huffbits[b][0] || !huffbits[b][1]) { /* Check dc/ac huffman table for this component */
return TJpgD::JDR_FMT1; /* Err: Nnot loaded */
}
if (!qttbl[qtid[i]]) { /* Check dequantizer table for this component */
return TJpgD::JDR_FMT1; /* Err: Not loaded */
}
}
/* Allocate working buffer for MCU and RGB */
if (!msy || !msx) return TJpgD::JDR_FMT1; /* Err: SOF0 has not been loaded */
dmsk = 0;
dpend = dptr + dctr;
--dptr;
return TJpgD::JDR_OK; /* Initialization succeeded. Ready to decompress the JPEG image. */
case 0xC1: /* SOF1 */
case 0xC2: /* SOF2 */
case 0xC3: /* SOF3 */
case 0xC5: /* SOF5 */
case 0xC6: /* SOF6 */
case 0xC7: /* SOF7 */
case 0xC9: /* SOF9 */
case 0xCA: /* SOF10 */
case 0xCB: /* SOF11 */
case 0xCD: /* SOF13 */
case 0xCE: /* SOF14 */
case 0xCF: /* SOF15 */
case 0xD9: /* EOI */
return TJpgD::JDR_FMT3; /* Unsuppoted JPEG standard (may be progressive JPEG) */
default: /* Unknown segment (comment, exif or etc..) */
break;
}
}
}
/*-----------------------------------------------------------------------*/
/* Start to decompress the JPEG picture */
/*-----------------------------------------------------------------------*/
TJpgD::JRESULT TJpgD::decomp (
uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*), /* RGB output function */
uint32_t (*linefunc)(TJpgD*,uint32_t,uint32_t),
uint32_t lineskip /* linefunc skip number */
)
{
uint16_t x, y, mx, my;
uint16_t rst, rsc;
TJpgD::JRESULT rc;
uint8_t workbuf[768];
uint8_t mcubuf[384];
uint8_t yidx = 0;
bayer = (bayer + 1) & 7;
mx = msx * 8; my = msy * 8; /* Size of the MCU (pixel) */
uint16_t lasty = ((height - 1) / my) * my;
dcv[2] = dcv[1] = dcv[0] = 0; /* Initialize DC values */
rst = rsc = 0;
rc = TJpgD::JDR_OK;
for (y = 0; y < height; y += my) { /* Vertical loop of MCUs */
for (x = 0; x < width; x += mx) { /* Horizontal loop of MCUs */
if (nrst && rst++ == nrst) { /* Process restart interval if enabled */
rc = restart(this, rsc++);
if (rc != TJpgD::JDR_OK) return rc;
rst = 1;
}
rc = mcu_load(this, mcubuf, (int32_t*)workbuf); /* Load an MCU (decompress huffman coded stream and apply IDCT) */
if (rc != TJpgD::JDR_OK) return rc;
rc = mcu_output(this, mcubuf, (uint8_t*)workbuf, outfunc, x, y); /* Output the MCU (color space conversion, scaling and output) */
if (rc != TJpgD::JDR_OK) return rc;
}
if (linefunc && (yidx == lineskip || y == lasty)) {
linefunc(this, y - yidx * my, yidx * my + ((height < y + my) ? height - y : my));
yidx = 0;
} else {
++yidx;
}
}
return rc;
}
typedef struct {
uint8_t* mcubuf = NULL;
uint_fast16_t x = 0;
uint_fast16_t y = 0;
uint_fast8_t h = 0;
volatile uint_fast8_t queue = false;
} queue_t;
typedef struct {
TJpgD* jd;
uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*);
uint32_t (*linefunc)(TJpgD*,uint32_t,uint32_t);
QueueHandle_t sem;
TaskHandle_t task;
} param_task_output;
static constexpr uint_fast8_t queue_max = 20;
static param_task_output param;
static uint8_t mcubufs[queue_max + 1][384];
static queue_t qwrites[queue_max];
static queue_t qline;
static uint_fast8_t qidx = 0;
static uint_fast8_t mcuidx = 0;
static void task_output(void* arg)
{
uint8_t workbuf[768];
param_task_output* p = (param_task_output*)arg;
queue_t* q;
//Serial.println("task_output start");
for (;;) {
if (!xQueueReceive(p->sem, &q, portMAX_DELAY)) continue;
if (!q) break;
//Serial.printf("task work: X=%d,Y=%d\r\n",q->x,q->y);
if (q->h == 0) {
mcu_output(p->jd, q->mcubuf, workbuf, p->outfunc, q->x, q->y);
} else {
p->linefunc(p->jd, q->y, q->h);
}
q->queue = false;
//Serial.println("task work done");
}
vQueueDelete(p->sem);
//Serial.println("task_output end");
vTaskDelete(NULL);
}
void TJpgD::multitask_begin ()
{
param.sem = xQueueCreate(queue_max + 1, sizeof(queue_t*));
xTaskCreatePinnedToCore(task_output, "task_output", 1600, ¶m, 1, ¶m.task, 0);
}
void TJpgD::multitask_end ()
{
queue_t* q = NULL;
xQueueSend(param.sem, &q, 0);
vTaskDelay(10);
}
TJpgD::JRESULT TJpgD::decomp_multitask (
uint32_t (*outfunc)(TJpgD*, void*, TJpgD::JRECT*), /* RGB output function */
uint32_t (*linefunc)(TJpgD*,uint32_t,uint32_t),
uint32_t lineskip /* linefunc skip number */
)
{
uint_fast16_t x, y, mx, my;
uint_fast16_t rst, rsc;
TJpgD::JRESULT rc;
uint8_t workbuf[768];
uint_fast16_t yidx = 0;
bayer = (bayer + 1) & 7;
param.jd = this;
param.outfunc = outfunc;
param.linefunc = linefunc;
queue_t* q = &qwrites[qidx];
queue_t* ql = &qline;
queue_t* qtmp = NULL;
mx = msx * 8; my = msy * 8; /* Size of the MCU (pixel) */
dcv[2] = dcv[1] = dcv[0] = 0; /* Initialize DC values */
rst = rsc = 0;
uint_fast16_t lasty = ((height - 1) / my) * my;
rc = TJpgD::JDR_OK;
y = 0;
do { /* Vertical loop of MCUs */
x = 0;
do { /* Horizontal loop of MCUs */
if (nrst && rst++ == nrst) { /* Process restart interval if enabled */
rc = restart(this, rsc++);
if (rc != TJpgD::JDR_OK) break;
rst = 1;
}
rc = mcu_load(this, mcubufs[mcuidx], (int32_t*)workbuf);
if (rc != TJpgD::JDR_OK) break;
if (!q->queue) {
//mcubufs[mcuidx][0] = 0;
//mcubufs[mcuidx][1] = 0;
q->mcubuf = mcubufs[mcuidx];
q->x = x;
q->y = y;
q->queue = true;
xQueueSend(param.sem, &q, 0);
mcuidx = (1 + mcuidx) % (queue_max + 1);
qidx = (1 + qidx) % queue_max;
q = &qwrites[qidx];
} else {
while (ql->queue) taskYIELD();
//mcubufs[mcuidx][0] = 0xFF;
//mcubufs[mcuidx][1] = 0xFF;
rc = mcu_output(this, mcubufs[mcuidx], workbuf, outfunc, x, y);
}
} while ((x += mx) < width);
if (rc != TJpgD::JDR_OK) break;
if (linefunc && (yidx == lineskip || y == lasty)) {
while (ql->queue) taskYIELD();
while (xQueueReceive(param.sem, &qtmp, 0)) {
//qtmp->mcubuf[0] = 0xFF;
//qtmp->mcubuf[1] = 0xFF;
mcu_output(this, qtmp->mcubuf, workbuf, outfunc, qtmp->x, qtmp->y);
qtmp->queue = false;
}
ql->h = (y == lasty) ? (yidx * my + height - y) : ((lineskip + 1) * my);
ql->y = y - yidx * my;
ql->queue = true;
xQueueSend(param.sem, &ql, 0);
yidx = 0;
} else {
++yidx;
}
} while ((y += my) < height);
return rc;
}
tjpgdClass.h
/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor include file (C)ChaN, 2019
/-----------------------------------------------------------------------------/
/ modify by lovyan03
/ May 29, 2019 Tweak for ArduinoESP32
/----------------------------------------------------------------------------*/
#ifndef _TJPGDEC_H_
#define _TJPGDEC_H_
/*---------------------------------------------------------------------------*/
/* System Configurations */
#define TJPGD_SZBUF 1426 /* Size of stream input buffer */
#define JD_FORMAT 0 /* Output pixel format 0:RGB888 (3 BYTE/pix), 1:RGB565 (1 WORD/pix) */
#define JD_TBLCLIP 0 /* Use table for saturation (might be a bit faster but increases 1K bytes of code size) */
/*---------------------------------------------------------------------------*/
#if defined(_WIN32) /* Main development platform */
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef short int16_t;
typedef unsigned long uint32_t;
typedef long int32_t;
#else
#include "stdint.h"
#endif
/* Decompressor object structure */
typedef struct TJpgD TJpgD;
struct TJpgD {
/* Error code */
typedef enum {
JDR_OK = 0, /* 0: Succeeded */
JDR_INTR, /* 1: Interrupted by output function */
JDR_INP, /* 2: Device error or wrong termination of input stream */
JDR_MEM1, /* 3: Insufficient memory pool for the image */
JDR_MEM2, /* 4: Insufficient stream input buffer */
JDR_PAR, /* 5: Parameter error */
JDR_FMT1, /* 6: Data format error (may be damaged data) */
JDR_FMT2, /* 7: Right format but not supported */
JDR_FMT3 /* 8: Not supported JPEG standard */
} JRESULT;
/* Rectangular structure */
typedef struct {
int_fast16_t left, right, top, bottom;
} JRECT;
uint8_t* dptr; /* Current data read ptr */
uint8_t* dpend; /* data end ptr */
uint8_t* inbuf; /* Bit stream input buffer */
uint_fast8_t dmsk; /* Current bit in the current read byte */
uint_fast8_t bayer; /* Output bayer gain */
uint_fast8_t msx, msy; /* MCU size in unit of block (width, height) */
uint_fast8_t qtid[3]; /* Quantization table ID of each component */
int_fast16_t dcv[3]; /* Previous DC element of each component */
uint_fast16_t nrst; /* Restart inverval */
int32_t width, height; /* Size of the input image (pixel) */
uint8_t* huffbits[2][2]; /* Huffman bit distribution tables [id][dcac] */
uint_fast16_t* huffcode[2][2]; /* Huffman code word tables [id][dcac] */
uint8_t* huffdata[2][2]; /* Huffman decoded data tables [id][dcac] */
int32_t* qttbl[4]; /* Dequantizer tables [id] */
void* pool; /* Pointer to available memory pool */
uint_fast16_t sz_pool; /* Size of momory pool (bytes available) */
uint32_t (*infunc)(TJpgD*, uint8_t*, uint32_t);/* Pointer to jpeg stream input function */
void* device; /* Pointer to I/O device identifiler for the session */
JRESULT prepare (uint32_t(*)(TJpgD*,uint8_t*,uint32_t), void*);
JRESULT decomp (uint32_t(*)(TJpgD*,void*,JRECT*), uint32_t(*)(TJpgD*,uint32_t,uint32_t) = 0, uint32_t = 0);
JRESULT decomp_multitask (uint32_t(*)(TJpgD*,void*,JRECT*), uint32_t(*)(TJpgD*,uint32_t,uint32_t) = 0, uint32_t = 0);
static void multitask_begin ();
static void multitask_end ();
};
#endif /* _TJPGDEC */
如果没有找到这个参考工程的话,直接复制这里的代码也是可以的
在这里需要修改MjpegClass.H文件,让他使用TFTe_SPI库
A:把库头文件更换为TFTe_SPI库
B:setup函数的传入参数tft 更改为TFT_eSPI类型,然后下面的使用耶做相应的修改。
C:jpgWriteRow函数里面,写数据入TFTlcd使用下面这个TFTe_SPI库里面的函数。
D:tft变量的声明中变量类型也要修改一下
3,实现视频播放首先定义一些东西,如下所示。
/******播放视频需要*******/
#define MJPEG_FILENAME "/movie/pikachu-dance_240x240_20fps.mjpeg"
#define MJPEG_BUFFER_SIZE (220 * 176 * 2 / 4)
#include "MjpegClass.h"
static MjpegClass mjpeg;
然后播放视频,代码如下,与参考工程的基本差不多,只是由于我在LVGL初始化的时候已经初始化过屏幕,所以不需要在初始化
/******播放视频*******/
void videoplay(){
// gfx->begin();
// gfx->fillScreen(BLACK);
delay(600);
File vFile = SD.open(MJPEG_FILENAME);
if (!vFile || vFile.isDirectory()) Serial.println(F("ERROR: Failed to open " MJPEG_FILENAME " file for reading"));
else{
uint8_t *mjpeg_buf = (uint8_t *)malloc(MJPEG_BUFFER_SIZE);
if (!mjpeg_buf) Serial.println(F("mjpeg_buf malloc failed!"));
else{
Serial.println(F("MJPEG video start"));
mjpeg.setup(vFile, mjpeg_buf, tft, true);
// Read video
while(mjpeg.readMjpegBuf()) mjpeg.drawJpg();// Play video
Serial.println(F("MJPEG video end"));
vFile.close();
}
}
}
备注:
采用这种方式播放视频是兼容lvgl的,也就是在播放视频时不去刷新lv_task_handler()时,则就不会出现播放视频刷新屏幕,而lvgl也在刷新屏幕的情况,他们分开刷新屏幕,屏幕显示没有问题。