Caffe自带工具包---绘制loss和accuracy曲线

  为什么要绘制loss和accuracy曲线?在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化网络的训练。本文主要介绍在基于caffe框架训练网络时,利用caffe自带的工具包来绘制曲线。caffe中自带小工具: caffe-master/tools/extra/parse_log.sh, caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/extra/plot_training_log.py.example

 

目录

1,训练模型并保存日志文件

2,解析日志文件

3,绘制accuracy 和loss曲线

4,多种曲线参数说明

5,附-常见问题

 

正文

1,训练模型并保存日志文件

在训练文件(train_road.sh)中的命令中加入一行参数 ,实现Log日志的记录如train_road_log.sh:

#!/usr/bin/env sh    
set -e    
    
TOOLS=./build/tools      
$TOOLS/caffe train  --solver=myself/road/prototxt_files/solver.prototxt 2>&1 | tee myself/road/Log/train_road_20180525.log

   

  或者,参考其他网友的写法,如下:

#!/usr/bin/env sh
set -e
CAFFEROOT=/home/meringue/Softwares/caffe-master
CIFAR10PY=/home/meringue/Documents/CaffePy/cifar10py
MODEL=$CIFAR10PY/cifar10_caffemodels/model_Alex_ST
TOOLS=$CAFFEROOT/build/tools
echo 'start training...'

GLOG_logtostderr=0 GLOG_log_dir=$MODEL/LOG/ \ # save log file
$TOOLS/caffe train \
  --solver=$MODEL/cifar10_quick_solver.prototxt $@

 

#!/usr/bin/env sh    
set -e   
GLOG_logtostderr=0 GLOG_log_dir=/home/liuyun/caffe/models/AAA/A12/Log/ /home/liuyun/caffe/build/tools/caffe train -solver examples/AAA/solver.prototxt \
--weights ./models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel

???

这样训练结束之后,会在Log文件夹中生成每次训练的Log日志(xxx.log)。如果没有生成.log,可以改成.txt后缀,最后自己手动重名名即可以了。

 

shparse_log.py)、extract_seconds.py、plot_training_log.py.example复制到上一步log日志文件的保存目录下。

 

2,解析日志文件

  这一步利用caffe中tools/extra文件夹下的parse_log.py来解析日志文件。 (提示:这里记得不要使用python3,因为有些地方不兼容,如果只有python3,那你可以根据提示修改相应的代码,下同。)

具体,进入到前面Log的文件夹下,终端中执行:

# cd caffe

# cd myself/road/Log

(1)使用.py:

# python parse_log.py train_road_0525.log /home/wp/caffe/myself/road/Log/

## python parse_log.py train_road_0525.log ./

#parse_log.py后,第1个参数是日志文件log的名字,第2个参数是解析完成log后的保存地址。

结果如下图,注意有逗号:

深度学习loss曲线不平滑 画loss曲线_深度学习loss曲线不平滑

(2)或者,使用.sh:# sh parse_log.sh train_road_0525.log

运行结束之后,会在当前文件夹下生成一个train_road_0525.log.train文件和一个train_road_0525.log.test文件。

结果如下图,注意无逗号:

 

深度学习loss曲线不平滑 画loss曲线_日志文件_02

3,绘制accuracy 和loss曲线

# cd caffe # cd myself/road/Log” 文件后,

(1)可以直接使用plot_training_log.py.example绘制曲线:

# python plot_training_log.py.example 0 save_train_road_0525.png train_road_0525.log

# 其中,0为图类型编号,全部编号参考《4,多种曲线参数说明》。

深度学习loss曲线不平滑 画loss曲线_python_03

(2)也可以,将plot_training_log.py.example改为plot_training_log.py,并执行以下命令就可以绘制曲线:

# python plot_training_log.py 6 save_train_road_0525_6.png train_road_0525.log 

# 其中,6为图类型编号,全部编号参考《4,多种曲线参数说明》。

深度学习loss曲线不平滑 画loss曲线_Test_04

4,多种曲线参数说明

 

Notes: 

1. Supporting multiple logs. 

2. Log file name must end with the lower-cased ".log"

Supported chart types: 

0: Test accuracy  vs. Iters 

1: Test accuracy  vs. Seconds 

2: Test loss  vs. Iters 

3: Test loss  vs. Seconds 

4: Train learning rate  vs. Iters 

5: Train learning rate  vs. Seconds 

6: Train loss  vs. Iters 

7: Train loss  vs. Seconds 

 

 

 

深度学习loss曲线不平滑 画loss曲线_python_05

5,附-常见问题

   利用plot_training_log.py文件来绘制,可能会出现一些问题,如下:

深度学习loss曲线不平滑 画loss曲线_python_06

 

 

 

深度学习loss曲线不平滑 画loss曲线_深度学习loss曲线不平滑_07

参考:

https://www.zhihu.com/question/49521165

进行解决。本文过程图像显示顺利,没有进行有关文件的修改,留做备用。