一、一些说明

1.支持的操作

hive 默认不支持updata 和 delete操作 insert也是执行缓慢,主要用于数据的计算

hive 数据类型---字符串,大部分与java一致。


2.内外表的区别

内部表:完全交给hive管理,数据会存储在hive所在路径,删除时删掉源文件。

外部表:增加hive管理的表,创表时记录数据所在路径,不移动数据,删除时不删除源文件,只删除路径链接。

 

二、简单的命令

show databases;                                                              显示数据库
create database dbName;                                                    创建数据库
drop database [IF EXISTS] dbName [cascade]                             有则强制删除
use {databaseName};                                                        使用某一数据库

desc tabName                                                                  查看表结构
show tables;                                                                   查看当前库下的表
show tables [like '*'] [in dbName]                                         查看某库某些表
create table tabName{columnName columnType,...}                   建(内部)表(需指定分隔符)
create external table tabName {同上}                                   建(外部)表
location 'hdfs.path';                                                       指定外部表源数据路径
row format delimited fields terminated by '*';                          直接写在创表语句末尾。
lines terminated by '\n';                              航分隔符默认"\n",暂时也只支持这一个
map keys terminated by 

alter table tabName RENAME TO newName;                               重命名表名
alter table tabName ADD COLUMNS (N T);                                向已有表中添加列
insert into tabName(columnName)values(data);                    向表中添加数据 
drop table tbname;                                                         删除表结构及数据

HIVE的数据导入的两种范式:
从linux上导入                   
load data local inpath 'linux根目录下写' into table dbName.tabName;
从HDFS的某一目录导入
load data inpath 'hdfs根目录下开始写' into table dbName.tabName; 
--------------------------------- --->此方式上传会删除源文件,相当于将数据剪切


hadoop job  -kill {job_id}  结束失败job的命令

 三、HIVE的JDBC

  

1      //1.加载驱动
 2         Class.forName("org.apache.hive.jdbc.HiveDriver");
 3         //2.打开连接
 4         Connection conn = DriverManager.getConnection("jdbc:hive2://sz01:10010/test");
 5         //mysql连接仅此处不同,三个参数
 6         //jdbc--->(url  = jdbc:mysql://IP:3306/dbName, u,p)
 7         //3.获得操作会话对象
 8         Statement statement = conn.createStatement();
 9         //4.操作hive
10         String sql = "select * from test1 ";
11         //5.接受结果
12         ResultSet rSet = statement.executeQuery(sql);
13         while (rSet.next()) {
14             System.out.println(rSet.getInt(1)+"\t"+rSet.getString(2));
15         }
16         //6.关闭连接
17         rSet.close();
18         statement.close();
19         conn.close();

 四、常用的建表语句 

  1. 直接建表法:  create table table_name(col_name data_type);
  2. 查询建表法:       create table table-name as (查询sql)------------------------->有数据,会执行MR过程
  3. like建表:       create table t2 like t1;------------------------------------------------>无数据,不执行MR过程

   创建时一般需指定表的结构等信息  

1 row format delimited
2 fields terminated by ','              列分隔符,行分隔符默认为"\n",一般不配置
3 collection items terminated by '-'        
4 map keys terminated by ':'
5 location '/user/t2'                 数据文件的位置(linux系统上的)----外部表
6 stored as textfile;                数据格式默认为文本类型

存储格式

存储方式

特点

TextFile

行存储

存储空间消耗比较大,并且压缩的text 无法分割和合并 查询的效率最低,可以直接存储,加载数据的速度最高

SequenceFile

行存储

存储空间消耗最大,压缩的文件可以分割和合并 查询效率高,需要通过text文件转化来加载                      

RCFile

数据按行分块 每块按照列存储

存储空间最小,

查询的效率最高 ,

需要通过text文件转化来加载,

加载的速度最低。

压缩快 快速列存取。

读记录尽量涉及到的block最少 

读取需要的列只需要读取每个row group 的头部定义。 

读取全量数据的操作 性能可能比sequencefile没有明显的优势

ORCFile

数据按行分块 每块按照列存储

压缩快,快速列存取 ,效率比rcfile高,是rcfile的改良版本

Parquet

列存储

相对于PRC,Parquet压缩比较低,查询效率较低,不支持update、insert和ACID.但是Parquet支持Impala查询引擎

五、保存hive表查询结果的方法
  1.保存到hdfs    在hdfs上运行
    hive -e "sql"  >> /output/out.txt       一定要双引号
    hive -f hive.sql > /output/out.txt  
 
  2.保存到hdfs上  hive中执行
    insert overwrite dirctory  /output/a.txt  sql
    不支持 insert into 导出
3.保存到linux上
    insert overwrite local directory  /tmp/a.txt   sql   

  4.保存到hive表上    
    insert into table tName SQL                追加导入
    insert overwrite table tName SQL          覆盖导入
    
  5.创表保存数据
    create table tName as sql