声明:本系列博客是根据SGG的视频整理而成,非常适合大家入门学习。

《2021年最新版大数据面试题全面开启更新》

常见的维表Join方式有四种:

  1. 预加载维表
  2. 热存储维表
  3. 广播维表
  4. Temporal table function join

下面分别使用这四种方式来实现一个join的需求,这个需求是:一个主流中数据是用户信息,字段包括用户姓名、城市id;维表是城市数据,字段包括城市ID、城市名称。要求用户表与城市表关联,输出为:用户名称、城市ID、城市名称。

用户表表结构如下:

字段名 数据类型 数据样例
用户姓名 String User1
城市ID Int 1001
时间戳 Long 1000

城市维表表结构如下:

字段名 数据类型 数据样例
城市ID Int 1001
城市名称 String beijing
时间戳 Long 1000

 

1、 预加载维表

通过定义一个类实现RichMapFunction,在open()中读取维表数据加载到内存中,在probe流map()方法中与维表数据进行关联。
RichMapFunction中open方法里加载维表数据到内存的方式特点如下:
优点:实现简单
缺点:因为数据存于内存,所以只适合小数据量并且维表数据更新频率不高的情况下。虽然可以在open中定义一个定时器定时更新维表,但是还是存在维表更新不及时的情况。
下面是一个例子:

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.HashMap;
import java.util.Map;

/**
 * Create By 鸣宇淳 on 2020/6/1
 * 这个例子是从socket中读取的流,数据为用户名称和城市id,维表是城市id、城市名称,
 * 主流和维表关联,得到用户名称、城市id、城市名称
 * 这个例子采用在RichMapfunction类的open方法中将维表数据加载到内存
 **/
public class JoinDemo1 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<Tuple2<String, Integer>> textStream = env.socketTextStream("localhost", 9000, "\n")
                .map(p -> {
                    //输入格式为:user,1000,分别是用户名称和城市编号
                    String[] list = p.split(",");
                    return new Tuple2<String, Integer>(list[0], Integer.valueOf(list[1]));
                })
                .returns(new TypeHint<Tuple2<String, Integer>>() {
                });
        DataStream<Tuple3<String, Integer, String>> result = textStream.map(new MapJoinDemo1());
        result.print();
        env.execute("joinDemo1");
    }

    static class MapJoinDemo1 extends RichMapFunction<Tuple2<String, Integer>, Tuple3<String, Integer, String>> {
        //定义一个变量,用于保存维表数据在内存
        Map<Integer, String> dim;

        @Override
        public void open(Configuration parameters) throws Exception {
            //在open方法中读取维表数据,可以从数据中读取、文件中读取、接口中读取等等。
            dim = new HashMap<>();
            dim.put(1001, "beijing");
            dim.put(1002, "shanghai");
            dim.put(1003, "wuhan");
            dim.put(1004, "changsha");
        }

        @Override
        public Tuple3<String, Integer, String> map(Tuple2<String, Integer> value) throws Exception {
            //在map方法中进行主流和维表的关联
            String cityName = "";
            if (dim.containsKey(value.f1)) {
                cityName = dim.get(value.f1);
            }
            return new Tuple3<>(value.f0, value.f1, cityName);
        }
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

2、 热存储维表

这种方式是将维表数据存储在Redis、HBase、MySQL等外部存储中,实时流在关联维表数据的时候实时去外部存储中查询,这种方式特点如下:
优点:维度数据量不受内存限制,可以存储很大的数据量。
缺点:因为维表数据在外部存储中,读取速度受制于外部存储的读取速度;另外维表的同步也有延迟。

(1) 使用cache来减轻访问压力

可以使用缓存来存储一部分常访问的维表数据,以减少访问外部系统的次数,比如使用guava Cache。
下面是一个例子:

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join;

import com.google.common.cache.*;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
 * Create By 鸣宇淳 on 2020/6/1
 **/
public class JoinDemo2 {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<Tuple2<String, Integer>> textStream = env.socketTextStream("localhost", 9000, "\n")
                .map(p -> {
                    //输入格式为:user,1000,分别是用户名称和城市编号
                    String[] list = p.split(",");
                    return new Tuple2<String, Integer>(list[0], Integer.valueOf(list[1]));
                })
                .returns(new TypeHint<Tuple2<String, Integer>>() {
                });

        DataStream<Tuple3<String, Integer, String>> result = textStream.map(new MapJoinDemo1());
        result.print();
        env.execute("joinDemo1");
    }

    static class MapJoinDemo1 extends RichMapFunction<Tuple2<String, Integer>, Tuple3<String, Integer, String>> {
        LoadingCache<Integer, String> dim;

        @Override
        public void open(Configuration parameters) throws Exception {
            //使用google LoadingCache来进行缓存
            dim = CacheBuilder.newBuilder()
                    //最多缓存个数,超过了就根据最近最少使用算法来移除缓存
                    .maximumSize(1000)
                    //在更新后的指定时间后就回收
                    .expireAfterWrite(10, TimeUnit.MINUTES)
                    //指定移除通知
                    .removalListener(new RemovalListener<Integer, String>() {
                        @Override
                        public void onRemoval(RemovalNotification<Integer, String> removalNotification) {
                            System.out.println(removalNotification.getKey() + "被移除了,值为:" + removalNotification.getValue());
                        }
                    })
                    .build(
                            //指定加载缓存的逻辑
                            new CacheLoader<Integer, String>() {
                                @Override
                                public String load(Integer cityId) throws Exception {
                                    String cityName = readFromHbase(cityId);
                                    return cityName;
                                }
                            }
                    );

        }

        private String readFromHbase(Integer cityId) {
            //读取hbase
            //这里写死,模拟从hbase读取数据
            Map<Integer, String> temp = new HashMap<>();
            temp.put(1001, "beijing");
            temp.put(1002, "shanghai");
            temp.put(1003, "wuhan");
            temp.put(1004, "changsha");
            String cityName = "";
            if (temp.containsKey(cityId)) {
                cityName = temp.get(cityId);
            }

            return cityName;
        }

        @Override
        public Tuple3<String, Integer, String> map(Tuple2<String, Integer> value) throws Exception {
            //在map方法中进行主流和维表的关联
            String cityName = "";
            if (dim.get(value.f1) != null) {
                cityName = dim.get(value.f1);
            }
            return new Tuple3<>(value.f0, value.f1, cityName);
        }
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

(2) 使用异步IO来提高访问吞吐量

Flink与外部存储系统进行读写操作的时候可以使用同步方式,也就是发送一个请求后等待外部系统响应,然后再发送第二个读写请求,这样的方式吞吐量比较低,可以用提高并行度的方式来提高吞吐量,但是并行度多了也就导致了进程数量多了,占用了大量的资源。
Flink中可以使用异步IO来读写外部系统,这要求外部系统客户端支持异步IO,不过目前很多系统都支持异步IO客户端。但是如果使用异步就要涉及到三个问题:
超时:如果查询超时那么就认为是读写失败,需要按失败处理;
并发数量:如果并发数量太多,就要触发Flink的反压机制来抑制上游的写入。
返回顺序错乱:顺序错乱了要根据实际情况来处理,Flink支持两种方式:允许乱序、保证顺序。

 Flink实例(五十八):维表join(二)Flink维表Join实践_Flink_05

 

 下面是一个实例,演示了试用异步IO来访问维表:

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join;

import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.AsyncDataStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.async.ResultFuture;
import org.apache.flink.streaming.api.functions.async.RichAsyncFunction;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;

/**
 * Create By 鸣宇淳 on 2020/6/1
 **/
public class JoinDemo3 {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<Tuple2<String, Integer>> textStream = env.socketTextStream("localhost", 9000, "\n")
                .map(p -> {
                    //输入格式为:user,1000,分别是用户名称和城市编号
                    String[] list = p.split(",");
                    return new Tuple2<String, Integer>(list[0], Integer.valueOf(list[1]));
                })
                .returns(new TypeHint<Tuple2<String, Integer>>() {
                });


        DataStream<Tuple3<String,Integer, String>> orderedResult = AsyncDataStream
                //保证顺序:异步返回的结果保证顺序,超时时间1秒,最大容量2,超出容量触发反压
                .orderedWait(textStream, new JoinDemo3AyncFunction(), 1000L, TimeUnit.MILLISECONDS, 2)
                .setParallelism(1);

        DataStream<Tuple3<String,Integer, String>> unorderedResult = AsyncDataStream
                //允许乱序:异步返回的结果允许乱序,超时时间1秒,最大容量2,超出容量触发反压
                .unorderedWait(textStream, new JoinDemo3AyncFunction(), 1000L, TimeUnit.MILLISECONDS, 2)
                .setParallelism(1);

        orderedResult.print();
        unorderedResult.print();
        env.execute("joinDemo");
    }

    //定义个类,继承RichAsyncFunction,实现异步查询存储在mysql里的维表
    //输入用户名、城市ID,返回 Tuple3<用户名、城市ID,城市名称>
    static class JoinDemo3AyncFunction extends RichAsyncFunction<Tuple2<String, Integer>, Tuple3<String, Integer, String>> {
        // 链接
        private static String jdbcUrl = "jdbc:mysql://192.168.145.1:3306?useSSL=false";
        private static String username = "root";
        private static String password = "123";
        private static String driverName = "com.mysql.jdbc.Driver";
        java.sql.Connection conn;
        PreparedStatement ps;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);

            Class.forName(driverName);
            conn = DriverManager.getConnection(jdbcUrl, username, password);
            ps = conn.prepareStatement("select city_name from tmp.city_info where id = ?");
        }

        @Override
        public void close() throws Exception {
            super.close();
            conn.close();
        }

        //异步查询方法
        @Override
        public void asyncInvoke(Tuple2<String, Integer> input, ResultFuture<Tuple3<String,Integer, String>> resultFuture) throws Exception {
            // 使用 city id 查询
            ps.setInt(1, input.f1);
            ResultSet rs = ps.executeQuery();
            String cityName = null;
            if (rs.next()) {
                cityName = rs.getString(1);
            }
            List list = new ArrayList<Tuple2<Integer, String>>();
            list.add(new Tuple3<>(input.f0,input.f1, cityName));
            resultFuture.complete(list);
        }

        //超时处理
        @Override
        public void timeout(Tuple2<String, Integer> input, ResultFuture<Tuple3<String,Integer, String>> resultFuture) throws Exception {
            List list = new ArrayList<Tuple2<Integer, String>>();
            list.add(new Tuple3<>(input.f0,input.f1, ""));
            resultFuture.complete(list);
        }
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

3、 广播维表

利用Flink的Broadcast State将维度数据流广播到下游做join操作。特点如下:
优点:维度数据变更后可以即时更新到结果中。
缺点:数据保存在内存中,支持的维度数据量比较小。
下面是一个实例:

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.BroadcastState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ReadOnlyBroadcastState;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.util.Collector;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Create By 鸣宇淳 on 2020/6/1
 * 这个例子是从socket中读取的流,数据为用户名称和城市id,维表是城市id、城市名称,
 * 主流和维表关联,得到用户名称、城市id、城市名称
 * 这个例子采用 Flink 广播流的方式来做为维度
 **/
public class JoinDemo4 {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //定义主流
        DataStream<Tuple2<String, Integer>> textStream = env.socketTextStream("localhost", 9000, "\n")
                .map(p -> {
                    //输入格式为:user,1000,分别是用户名称和城市编号
                    String[] list = p.split(",");
                    return new Tuple2<String, Integer>(list[0], Integer.valueOf(list[1]));
                })
                .returns(new TypeHint<Tuple2<String, Integer>>() {
                });
        
        //定义城市流
        DataStream<Tuple2<Integer, String>> cityStream = env.socketTextStream("localhost", 9001, "\n")
                .map(p -> {
                    //输入格式为:城市ID,城市名称
                    String[] list = p.split(",");
                    return new Tuple2<Integer, String>(Integer.valueOf(list[0]), list[1]);
                })
                .returns(new TypeHint<Tuple2<Integer, String>>() {
                });

        //将城市流定义为广播流
        final MapStateDescriptor<Integer, String> broadcastDesc = new MapStateDescriptor("broad1", Integer.class, String.class);
        BroadcastStream<Tuple2<Integer, String>> broadcastStream = cityStream.broadcast(broadcastDesc);

        DataStream result = textStream.connect(broadcastStream)
                .process(new BroadcastProcessFunction<Tuple2<String, Integer>, Tuple2<Integer, String>, Tuple3<String, Integer, String>>() {
                    //处理非广播流,关联维度
                    @Override
                    public void processElement(Tuple2<String, Integer> value, ReadOnlyContext ctx, Collector<Tuple3<String, Integer, String>> out) throws Exception {
                        ReadOnlyBroadcastState<Integer, String> state = ctx.getBroadcastState(broadcastDesc);
                        String cityName = "";
                        if (state.contains(value.f1)) {
                            cityName = state.get(value.f1);
                        }
                        out.collect(new Tuple3<>(value.f0, value.f1, cityName));
                    }

                    @Override
                    public void processBroadcastElement(Tuple2<Integer, String> value, Context ctx, Collector<Tuple3<String, Integer, String>> out) throws Exception {
                        System.out.println("收到广播数据:" + value);
                        ctx.getBroadcastState(broadcastDesc).put(value.f0, value.f1);
                    }
                });


        result.print();
        env.execute("joinDemo");
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

4、 Temporal table function join

Temporal table是持续变化表上某一时刻的视图,Temporal table function是一个表函数,传递一个时间参数,返回Temporal table这一指定时刻的视图。
可以将维度数据流映射为Temporal table,主流与这个Temporal table进行关联,可以关联到某一个版本(历史上某一个时刻)的维度数据。
Temporal table function join的特点如下:
优点:维度数据量可以很大,维度数据更新及时,不依赖外部存储,可以关联不同版本的维度数据。
缺点:只支持在Flink SQL API中使用。

(1) ProcessingTime的一个实例

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join;

import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;


/**
 * Create By 鸣宇淳 on 2020/6/1
 **/
public class JoinDemo5 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, bsSettings);

        //定义主流
        DataStream<Tuple2<String, Integer>> textStream = env.socketTextStream("localhost", 9000, "\n")
                .map(p -> {
                    //输入格式为:user,1000,分别是用户名称和城市编号
                    String[] list = p.split(",");
                    return new Tuple2<String, Integer>(list[0], Integer.valueOf(list[1]));
                })
                .returns(new TypeHint<Tuple2<String, Integer>>() {
                });

        //定义城市流
        DataStream<Tuple2<Integer, String>> cityStream = env.socketTextStream("localhost", 9001, "\n")
                .map(p -> {
                    //输入格式为:城市ID,城市名称
                    String[] list = p.split(",");
                    return new Tuple2<Integer, String>(Integer.valueOf(list[0]), list[1]);
                })
                .returns(new TypeHint<Tuple2<Integer, String>>() {
                });

        //转变为Table
        Table userTable = tableEnv.fromDataStream(textStream, "user_name,city_id,ps.proctime");
        Table cityTable = tableEnv.fromDataStream(cityStream, "city_id,city_name,ps.proctime");

        //定义一个TemporalTableFunction
        TemporalTableFunction dimCity = cityTable.createTemporalTableFunction("ps", "city_id");
        //注册表函数
        tableEnv.registerFunction("dimCity", dimCity);

        //关联查询
        Table result = tableEnv
                .sqlQuery("select u.user_name,u.city_id,d.city_name from " + userTable + " as u " +
                        ", Lateral table (dimCity(u.ps)) d " +
                        "where u.city_id=d.city_id");
        
        //打印输出
        DataStream resultDs = tableEnv.toAppendStream(result, Row.class);
        resultDs.print();
        env.execute("joinDemo");
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

(2) EventTime的一个实例

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join;

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;

import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.List;

/**
 * Create By 鸣宇淳 on 2020/6/1
 **/
public class JoinDemo9 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //指定是EventTime
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, bsSettings);
        env.setParallelism(1);

        //主流,用户流, 格式为:user_name、city_id、ts
        List<Tuple3<String, Integer, Long>> list1 = new ArrayList<>();
        list1.add(new Tuple3<>("user1", 1001, 1L));
        list1.add(new Tuple3<>("user1", 1001, 10L));
        list1.add(new Tuple3<>("user2", 1002, 2L));
        list1.add(new Tuple3<>("user2", 1002, 15L));
        DataStream<Tuple3<String, Integer, Long>> textStream = env.fromCollection(list1)
                .assignTimestampsAndWatermarks(
                        //指定水位线、时间戳
                        new BoundedOutOfOrdernessTimestampExtractor<Tuple3<String, Integer, Long>>(Time.seconds(10)) {
                            @Override
                            public long extractTimestamp(Tuple3<String, Integer, Long> element) {
                                return element.f2;
                            }
                        }
                );

        //定义城市流,格式为:city_id、city_name、ts
        List<Tuple3<Integer, String, Long>> list2 = new ArrayList<>();
        list2.add(new Tuple3<>(1001, "beijing", 1L));
        list2.add(new Tuple3<>(1001, "beijing2", 10L));
        list2.add(new Tuple3<>(1002, "shanghai", 1L));
        list2.add(new Tuple3<>(1002, "shanghai2", 5L));

        DataStream<Tuple3<Integer, String, Long>> cityStream = env.fromCollection(list2)
                .assignTimestampsAndWatermarks(
                        //指定水位线、时间戳
                        new BoundedOutOfOrdernessTimestampExtractor<Tuple3<Integer, String, Long>>(Time.seconds(10)) {
                            @Override
                            public long extractTimestamp(Tuple3<Integer, String, Long> element) {
                                return element.f2;
                            }
                        });

        //转变为Table
        Table userTable = tableEnv.fromDataStream(textStream, "user_name,city_id,ts.rowtime");
        Table cityTable = tableEnv.fromDataStream(cityStream, "city_id,city_name,ts.rowtime");

        tableEnv.createTemporaryView("userTable", userTable);
        tableEnv.createTemporaryView("cityTable", cityTable);

        //定义一个TemporalTableFunction
        TemporalTableFunction dimCity = cityTable.createTemporalTableFunction("ts", "city_id");
        //注册表函数
        tableEnv.registerFunction("dimCity", dimCity);

        //关联查询
        Table result = tableEnv
                .sqlQuery("select u.user_name,u.city_id,d.city_name,u.ts from userTable as u " +
                        ", Lateral table (dimCity(u.ts)) d " +
                        "where u.city_id=d.city_id");

        //打印输出
        DataStream resultDs = tableEnv.toAppendStream(result, Row.class);
        resultDs.print();
        env.execute("joinDemo");
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

结果输出为:

user1,1001,beijing,1970-01-01T00:00:00.001
user1,1001,beijing2,1970-01-01T00:00:00.010
user2,1002,shanghai,1970-01-01T00:00:00.002
user2,1002,shanghai2,1970-01-01T00:00:00.015

通过结果可以看到,根据主流中的EventTime的时间,去维表流中取响应时间版本的数据。

(3) Kafka Source的EventTime实例

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join.temporaltablefunctionjoin;

import lombok.Data;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.functions.TemporalTableFunction;
import org.apache.flink.types.Row;

import java.io.Serializable;
import java.util.Properties;

/**
 * Create By 鸣宇淳 on 2020/6/1
 **/
public class JoinDemo10 {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //指定是EventTime
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, bsSettings);
        env.setParallelism(1);

        //Kafka的ip和要消费的topic,//Kafka设置
        String kafkaIPs = "192.168.***.**1:9092,192.168.***.**2:9092,192.168.***.**3:9092";
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", kafkaIPs);
        props.setProperty("group.id", "group.cyb.2");

        //读取用户信息Kafka
        FlinkKafkaConsumer<UserInfo> userConsumer = new FlinkKafkaConsumer<UserInfo>("user", new UserInfoSchema(), props);
        userConsumer.setStartFromEarliest();
        userConsumer.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<UserInfo>(Time.seconds(0)) {
            @Override
            public long extractTimestamp(UserInfo userInfo) {
                return userInfo.getTs();
            }
        });

        //读取城市维度信息Kafka
        FlinkKafkaConsumer<CityInfo> cityConsumer = new FlinkKafkaConsumer<CityInfo>("city", new CityInfoSchema(), props);
        cityConsumer.setStartFromEarliest();
        cityConsumer.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<CityInfo>(Time.seconds(0)) {
            @Override
            public long extractTimestamp(CityInfo cityInfo) {
                return cityInfo.getTs();
            }
        });

        //主流,用户流, 格式为:user_name、city_id、ts
        Table userTable = tableEnv.fromDataStream(env.addSource(userConsumer),"userName,cityId,ts.rowtime" );
        //定义城市维度流,格式为:city_id、city_name、ts
        Table cityTable = tableEnv.fromDataStream(env.addSource(cityConsumer),"cityId,cityName,ts.rowtime");
        tableEnv.createTemporaryView("userTable", userTable);
        tableEnv.createTemporaryView("cityTable", cityTable);

        //定义一个TemporalTableFunction
        TemporalTableFunction dimCity = cityTable.createTemporalTableFunction("ts", "cityId");
        //注册表函数
        tableEnv.registerFunction("dimCity", dimCity);

        Table u = tableEnv.sqlQuery("select * from userTable");
        u.printSchema();
        tableEnv.toAppendStream(u, Row.class).print("用户流接收到:");

        Table c = tableEnv.sqlQuery("select * from cityTable");
        c.printSchema();
        tableEnv.toAppendStream(c, Row.class).print("城市流接收到:");

        //关联查询
        Table result = tableEnv
                .sqlQuery("select u.userName,u.cityId,d.cityName,u.ts " +
                        "from userTable as u " +
                        ", Lateral table  (dimCity(u.ts)) d " +
                        "where u.cityId=d.cityId");

        //打印输出
        DataStream resultDs = tableEnv.toAppendStream(result, Row.class);
        resultDs.print("\t\t关联输出:");
        env.execute("joinDemo");
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join.temporaltablefunctionjoin;
import java.io.Serializable;

/**
 * Create By 鸣宇淳 on 2020/6/4
 **/
 @Data
public class UserInfo implements Serializable {
    private String userName;
    private Integer cityId;
    private Long ts;
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join.temporaltablefunctionjoin;
import java.io.Serializable;

/**
 * Create By 鸣宇淳 on 2020/6/4
 **/
@Data
public class CityInfo implements Serializable {
    private Integer cityId;
    private String cityName;
    private Long ts;
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join.temporaltablefunctionjoin;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.serialization.DeserializationSchema;

import java.io.IOException;
import java.nio.charset.StandardCharsets;

/**
 * Create By 鸣宇淳 on 2020/6/4
 **/
public class UserInfoSchema implements DeserializationSchema<UserInfo> {

    @Override
    public UserInfo deserialize(byte[] message) throws IOException {
        String jsonStr = new String(message, StandardCharsets.UTF_8);
        UserInfo data = JSON.parseObject(jsonStr, new TypeReference<UserInfo>() {});
        return data;
    }

    @Override
    public boolean isEndOfStream(UserInfo nextElement) {
        return false;
    }

    @Override
    public TypeInformation<UserInfo> getProducedType() {
        return TypeInformation.of(new TypeHint<UserInfo>() {
        });
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

package join.temporaltablefunctionjoin;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;

import java.io.IOException;
import java.nio.charset.StandardCharsets;

/**
 * Create By 鸣宇淳 on 2020/6/4
 **/
public class CityInfoSchema implements DeserializationSchema<CityInfo> {


    @Override
    public CityInfo deserialize(byte[] message) throws IOException {
        String jsonStr = new String(message, StandardCharsets.UTF_8);
        CityInfo data = JSON.parseObject(jsonStr, new TypeReference<CityInfo>() {});
        return data;
    }

    @Override
    public boolean isEndOfStream(CityInfo nextElement) {
        return false;
    }

    @Override
    public TypeInformation<CityInfo> getProducedType() {
        return TypeInformation.of(new TypeHint<CityInfo>() {
        });
    }
}

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

依次向user和city两个topic中写入数据,
用户信息格式:{“userName”:“user1”,“cityId”:1,“ts”:11}
城市维度格式:{“cityId”:1,“cityName”:“nanjing”,“ts”:15}
测试得到的输出如下:

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

城市流接收到:> 1,beijing,1970-01-01T00:00
用户流接收到:> user1,1,1970-01-01T00:00
        关联输出:> user1,1,beijing,1970-01-01T00:00
城市流接收到:> 1,shanghai,1970-01-01T00:00:00.005
用户流接收到:> user1,1,1970-01-01T00:00:00.001
        关联输出:> user1,1,beijing,1970-01-01T00:00:00.001
用户流接收到:> user1,1,1970-01-01T00:00:00.004
        关联输出:> user1,1,beijing,1970-01-01T00:00:00.004
用户流接收到:> user1,1,1970-01-01T00:00:00.005
        关联输出:> user1,1,shanghai,1970-01-01T00:00:00.005
用户流接收到:> user1,1,1970-01-01T00:00:00.007
用户流接收到:> user1,1,1970-01-01T00:00:00.009
城市流接收到:> 1,shanghai,1970-01-01T00:00:00.007
        关联输出:> user1,1,shanghai,1970-01-01T00:00:00.007
城市流接收到:> 1,wuhan,1970-01-01T00:00:00.010
        关联输出:> user1,1,shanghai,1970-01-01T00:00:00.009
用户流接收到:> user1,1,1970-01-01T00:00:00.011
城市流接收到:> 1,nanjing,1970-01-01T00:00:00.015
        关联输出:> user1,1,wuhan,1970-01-01T00:00:00.011

Flink实例(五十八):维表join(二)Flink维表Join实践_Flink

5、四种维表关联方式

 

         
  预加载到内存 热存储关联 广播维表 Temporal table function jsoin
实现复杂度  
维表数据量  
维表更新频率  
维表更新实时性  
维表形式   热存储 实时流 实时流  
是否依然外部存储