哈密顿绕行世界问题

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8325    Accepted Submission(s): 4892

Problem Description

一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。 
 

Input

前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
 
Output
输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output
 

Sample Input

2 5 20 1 3 12 2 4 10 3 5 8 1 4 6 5 7 19 6 8 17 4 7 9 8 10 16 3 9 11 10 12 15 2 11 13 12 14 20 13 15 18 11 14 16 9 15 17 7 16 18 14 17 19 6 18 20 1 13 19 5 0
 

Sample Output

1: 5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5 2: 5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5 3: 5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5 4: 5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5 5: 5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5 6: 5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5 7: 5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5 8: 5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5 9: 5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5 10: 5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5 11: 5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5 12: 5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5 13: 5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5 14: 5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5 15: 5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5 16: 5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5 17: 5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5 18: 5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5 19: 5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5 20: 5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5 21: 5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5 22: 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 23: 5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5 24: 5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5 25: 5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5 26: 5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5 27: 5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5 28: 5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5 29: 5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5 30: 5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5 31: 5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5 32: 5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5 33: 5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5 34: 5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5 35: 5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5 36: 5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5 37: 5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5 38: 5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5 39: 5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5 40: 5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5 41: 5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5 42: 5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5 43: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 44: 5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5 45: 5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5 46: 5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5 47: 5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5 48: 5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5 49: 5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5 50: 5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5 51: 5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5 52: 5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5 53: 5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5 54: 5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5 55: 5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5 56: 5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5 57: 5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5 58: 5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5 59: 5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5 60: 5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5
代码:
 1 #include<stdio.h>
 2 using namespace std;
 3 
 4 int map[25][4];            //记录每个城市的相邻的三个城市
 5 int visited[21];        //记录某个城市是否被访问过
 6 int route[21];            //记录某条路线经过的城市顺序
 7 
 8 int cnt = 0;
 9 
10 //某一次探路
11 void dfs(int a, int len, int origin)        //三个参数分别为此次探路的起始城市, 距离最初起点的距离, 和最初的起点
12 {
13     visited[a] = 1;            //将a城市标记为访问过
14     route[len] = a;            //并将a放入路线中
15 
16     for (int i = 1; i < 4; i++)
17     {
18         int t = map[a][i];
19         if (t == origin && len == 19)        //如果邻接点是原点且从原点出发经过19段路程,说明找到了一条路径
20         {
21             printf("%d:  ", ++cnt);
22             for (int j = 0; j <= len; j++)    //打印这条路线
23                 printf("%d ", route[j]);
24             printf("%d\n", origin);
25         }
26 
27         if (!visited[t])
28             dfs(t, len + 1, origin);
29     }
30 
31     visited[a] = 0;        //将a城市重新标记为未访问,方便下次探路
32 }
33 
34 
35 int main()
36 {
37     int city;
38 
39     for (int i = 1; i <= 20; i++)
40         scanf_s("%d %d %d", &map[i][1], &map[i][2], &map[i][3]);
41     while (scanf_s("%d", &city), city)
42     {
43         dfs(city, 0, city);
44     }
45 
46 }

 

 

N皇后问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 38709    Accepted Submission(s): 16447

Problem Description

在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。

 Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
 

Output

共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
 

Sample Input

1 8 5 0
 
Sample Output
1 92 10

 

 

 1 #include <iostream>
 2 #include <algorithm>
 3 
 4 using namespace std;
 5 
 6 int column[11];        //每行的皇后的列号
 7 int total = 0;
 8 
 9 /*假设前k个皇后已经放好位置,放入第k+ 1个皇后*/
10 void Queue(int k, int N)
11 {
12     if (k == N)
13         total++;        //排放次数加一
14 
15     for (int i = 1; i <= N; i++)        //尝试每个列号
16     {
17         int j = 1;
18         for (; j <= k; j++)
19         {
20             if (column[j] == i || (k + 1 - j) == abs(i - column[j]))        //k + 1的列号可能大于k的列号,所以要加绝对值
21                 break;
22         }
23 
24         if (j == k + 1 && k + 1 <= N)            //说明没有冲突
25         {
26             column[k + 1] = i;            //记录下第k + 1个皇后的列号
27             Queue(k + 1, N);            //
28         }
29     }
30     
31 }
32 
33 int main()
34 {
35     int N;
36 
37     int chess[11];
38     for (int i = 1; i < 11; i++)
39     {
40         total = 0;
41         Queue(0, i);        //前0个皇后位置已摆好
42         chess[i] = total;
43     }
44 
45     while (cin >> N && N != 0)
46     {
47         total = chess[N];
48         cout << total << endl;
49     }
50 
51     return 0;
52 }