前言
看完神经网络及BP算法介绍后,这里做一个小实验,内容是来自斯坦福UFLDL教程,实现图像的压缩表示,模型是用神经网络模型,训练方法是BP后向传播算法。
理论
在有监督学习中,训练样本是具有标签的,一般神经网络是有监督的学习方法。我们这里要讲的是自编码神经网络,这是一种无监督的学习方法,它是让输出值等于自身来实现的。
从图中可以看到,神经网络模型只有一层隐含层,输出层跟输入层的神经单元个数是一样的。如果隐含层单元个数比输入层少的话,我们用这个模型学到的是 输入数据的压缩表示,相当于对输入数据进行降维(这是一种非线性的降维方法)。实际上,如果隐含层单元个数比输入层多,我们可以让隐含层的大部分单元激活值接近0,就是让它们稀疏,这样学到的也是压缩表示。我们模型要使得输出层跟输入层一样,就是隐含层要能够重建出跟输入层一样的输出层,这样我们学到的压缩表示才是有意义的。
回忆下之前介绍过的损失函数:
在这里,y是输出层,跟输入层是一样的。
自编码神经网络还增加了稀疏性惩罚一项。它是对隐含层进行了稀疏性的约束,即使得隐含层大部分值都处于非active状态。定义隐含层节点j的稀疏程度为
上式是对整个样本求隐含层节点j的平均值,如果是所有隐含层节点,那么就组成一个向量。
我们要设置期望隐含层稀疏性的程度,假设为
,因此我们希望对于所有的节点j
。
那怎么衡量实际跟期望的差别呢?
实际上是关于伯努利变量p与q的 KL离散度(参考我之前写的关于信息熵的博客)。
此时损失函数为
由于加了稀疏项损失函数,对第二层节点求残差时公式变为
实验
实验教程是在 Exercise:Sparse Autoencoder,要实现的文件是 sampleIMAGES.m, sparseAutoencoderCost.m,computeNumericalGradient.m
实验步骤:
- 生成训练集
- 稀疏自编码目标函数
- 梯度校验
- 训练稀疏自编码
- 可视化
最后一步可视化是
,把x用图像表示出来的。
代码如下:
sampleIMAGES.m
1. <span style="font-size:14px;">function patches = sampleIMAGES()
2. % sampleIMAGES
3. % Returns 10000 patches for training
4.
5.
6. load IMAGES; % load images from disk
7.
8.
9. patchsize = 8; % we'll use 8x8 patches
10. numpatches = 10000;
11.
12.
13. % Initialize patches with zeros. Your code will fill in this matrix--one
14. % column per patch, 10000 columns.
15. patches = zeros(patchsize*patchsize, numpatches);
16.
17.
18. %% ---------- YOUR CODE HERE --------------------------------------
19. % Instructions: Fill in the variable called "patches" using data
20. % from IMAGES.
21. %
22. % IMAGES is a 3D array containing 10 images
23. % For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
24. % and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
25. % it. (The contrast on these images look a bit off because they have
26. % been preprocessed using using "whitening." See the lecture notes for
27. % more details.) As a second example, IMAGES(21:30,21:30,1) is an image
28. % patch corresponding to the pixels in the block (21,21) to (30,30) of
29. % Image 1
30. [m,n,num] = size(IMAGES);
31.
32.
33. for i=1:numpatches
34. j = randi(num);
35. bx = randi(m-patchsize+1);
36. by = randi(n-patchsize+1);
37. block = IMAGES(bx:bx+patchsize-1,by:by+patchsize-1,j);
38.
39. patches(:,i) = block(:);
40. end
41.
42.
43.
44.
45.
46.
47. %% ---------------------------------------------------------------
48. % For the autoencoder to work well we need to normalize the data
49. % Specifically, since the output of the network is bounded between [0,1]
50. % (due to the sigmoid activation function), we have to make sure
51. % the range of pixel values is also bounded between [0,1]
52. patches = normalizeData(patches);
53.
54.
55. end
56.
57.
58.
59.
60. %% ---------------------------------------------------------------
61. function patches = normalizeData(patches)
62.
63.
64. % Squash data to [0.1, 0.9] since we use sigmoid as the activation
65. % function in the output layer
66.
67.
68. % Remove DC (mean of images).
69. patches = bsxfun(@minus, patches, mean(patches));
70.
71.
72. % Truncate to +/-3 standard deviations and scale to -1 to 1
73. pstd = 3 * std(patches(:));
74. patches = max(min(patches, pstd), -pstd) / pstd;
75.
76.
77. % Rescale from [-1,1] to [0.1,0.9]
78. patches = (patches + 1) * 0.4 + 0.1;
79.
80.
81. end
82. </span>
SparseAutoencoderCost.m
1. <span style="font-size:14px;">function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
2. lambda, sparsityParam, beta, data)
3.
4. % visibleSize: the number of input units (probably 64)
5. % hiddenSize: the number of hidden units (probably 25)
6. % lambda: weight decay parameter
7. % sparsityParam: The desired average activation for the hidden units (denoted in the lecture
8. % notes by the greek alphabet rho, which looks like a lower-case "p").
9. % beta: weight of sparsity penalty term
10. % data: Our 64x10000 matrix containing the training data. So, data(:,i) is the i-th training example.
11.
12. % The input theta is a vector (because minFunc expects the parameters to be a vector).
13. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
14. % follows the notation convention of the lecture notes.
15.
16. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
17. W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
18. b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
19. b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
20.
21. % Cost and gradient variables (your code needs to compute these values).
22. % Here, we initialize them to zeros.
23. cost = 0;
24. W1grad = zeros(size(W1));
25. W2grad = zeros(size(W2));
26. b1grad = zeros(size(b1));
27. b2grad = zeros(size(b2));
28.
29. %% ---------- YOUR CODE HERE --------------------------------------
30. % Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
31. % and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
32. %
33. % W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
34. % Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
35. % as b1, etc. Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
36. % respect to W1. I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b)
37. % with respect to the input parameter W1(i,j). Thus, W1grad should be equal to the term
38. % [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2
39. % of the lecture notes (and similarly for W2grad, b1grad, b2grad).
40. %
41. % Stated differently, if we were using batch gradient descent to optimize the parameters,
42. % the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2.
43. %
44.
45. %矩阵向量化形式实现,速度比不用向量快得多
46. Jcost = 0; %平方误差
47. Jweight = 0; %规则项惩罚
48. Jsparse = 0; %稀疏性惩罚
49. [n, m] = size(data); %m为样本数,这里是10000,n为样本维数,这里是64
50.
51. %feedforward前向算法计算隐含层和输出层的每个节点的z值(线性组合值)和a值(激活值)
52. %data每一列是一个样本,
53. z2 = W1*data + repmat(b1,1,m); %W1*data的每一列是每个样本的经过权重W1到隐含层的线性组合值,repmat把列向量b1扩充成m列b1组成的矩阵
54. a2 = sigmoid(z2);
55. z3 = W2*a2 + repmat(b2,1,m);
56. a3 = sigmoid(z3);
57.
58. %计算预测结果与理想结果的平均误差
59. Jcost = (0.5/m)*sum(sum((a3-data).^2));
60. %计算权重惩罚项
61. Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));
62. %计算稀疏性惩罚项
63. rho_hat = (1/m)*sum(a2,2);
64. Jsparse = sum(sparsityParam.*log(sparsityParam./rho_hat)+(1-sparsityParam).*log((1-sparsityParam)./(1-rho_hat)));
65.
66. %计算总损失函数
67. cost = Jcost + lambda*Jweight + beta*Jsparse;
68.
69. %反向传播求误差值
70. delta3 = -(data-a3).*fprime(a3); %每一列是一个样本对应的误差
71. sterm = beta*(-sparsityParam./rho_hat+(1-sparsityParam)./(1-rho_hat));
72. delta2 = (W2'*delta3 + repmat(sterm,1,m)).*fprime(a2);
73.
74. %计算梯度
75. W2grad = delta3*a2';
76. W1grad = delta2*data';
77. W2grad = W2grad/m + lambda*W2;
78. W1grad = W1grad/m + lambda*W1;
79. b2grad = sum(delta3,2)/m; %因为对b的偏导是个向量,这里要把delta3的每一列加起来
80. b1grad = sum(delta2,2)/m;
81.
82. %%----------------------------------
83. % %对每个样本进行计算, non-vectorial implementation
84. % [n m] = size(data);
85. % a2 = zeros(hiddenSize,m);
86. % a3 = zeros(visibleSize,m);
87. % Jcost = 0; %平方误差项
88. % rho_hat = zeros(hiddenSize,1); %隐含层每个节点的平均激活度
89. % Jweight = 0; %权重衰减项
90. % Jsparse = 0; % 稀疏项代价
91. %
92. % for i=1:m
93. % %feedforward向前转播
94. % z2(:,i) = W1*data(:,i)+b1;
95. % a2(:,i) = sigmoid(z2(:,i));
96. % z3(:,i) = W2*a2(:,i)+b2;
97. % a3(:,i) = sigmoid(z3(:,i));
98. % Jcost = Jcost+sum((a3(:,i)-data(:,i)).*(a3(:,i)-data(:,i)));
99. % rho_hat = rho_hat+a2(:,i); %累加样本隐含层的激活度
100. % end
101. %
102. % rho_hat = rho_hat/m; %计算平均激活度
103. % Jsparse = sum(sparsityParam*log(sparsityParam./rho_hat) + (1-sparsityParam)*log((1-sparsityParam)./(1-rho_hat))); %计算稀疏代价
104. % Jweight = sum(W1(:).*W1(:))+sum(W2(:).*W2(:));%计算权重衰减项
105. % cost = Jcost/2/m + Jweight/2*lambda + beta*Jsparse; %计算总代价
106. %
107. % for i=1:m
108. % %backpropogation向后传播
109. % delta3 = -(data(:,i)-a3(:,i)).*fprime(a3(:,i));
110. % delta2 = (W2'*delta3 +beta*(-sparsityParam./rho_hat+(1-sparsityParam)./(1-rho_hat))).*fprime(a2(:,i));
111. %
112. % W2grad = W2grad + delta3*a2(:,i)';
113. % W1grad = W1grad + delta2*data(:,i)';
114. % b2grad = b2grad + delta3;
115. % b1grad = b1grad + delta2;
116. % end
117. % %计算梯度
118. % W1grad = W1grad/m + lambda*W1;
119. % W2grad = W2grad/m + lambda*W2;
120. % b1grad = b1grad/m;
121. % b2grad = b2grad/m;
122.
123. % -------------------------------------------------------------------
124. % After computing the cost and gradient, we will convert the gradients back
125. % to a vector format (suitable for minFunc). Specifically, we will unroll
126. % your gradient matrices into a vector.
127. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
128.
129. end
130.
131. %% Implementation of derivation of f(z)
132. % f(z) = sigmoid(z) = 1./(1+exp(-z))
133. % a = 1./(1+exp(-z))
134. % delta(f) = a.*(1-a)
135. function dz = fprime(a)
136. dz = a.*(1-a);
137. end
138. %%
139. %-------------------------------------------------------------------
140. % Here's an implementation of the sigmoid function, which you may find useful
141. % in your computation of the costs and the gradients. This inputs a (row or
142. % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)).
143.
144. function sigm = sigmoid(x)
145.
146. sigm = 1 ./ (1 + exp(-x));
147. end
148. </span>
computeNumericalGradient.m
1. <span style="font-size:14px;">function numgrad = computeNumericalGradient(J, theta)
2. % numgrad = computeNumericalGradient(J, theta)
3. % theta: a vector of parameters
4. % J: a function that outputs a real-number. Calling y = J(theta) will return the
5. % function value at theta.
6.
7. % Initialize numgrad with zeros
8. numgrad = zeros(size(theta));
9.
10. %% ---------- YOUR CODE HERE --------------------------------------
11. % Instructions:
12. % Implement numerical gradient checking, and return the result in numgrad.
13. % (See Section 2.3 of the lecture notes.)
14. % You should write code so that numgrad(i) is (the numerical approximation to) the
15. % partial derivative of J with respect to the i-th input argument, evaluated at theta.
16. % I.e., numgrad(i) should be the (approximately) the partial derivative of J with
17. % respect to theta(i).
18. %
19. % Hint: You will probably want to compute the elements of numgrad one at a time.
20. EPSILON = 1e-4;
21.
22. for i=1:length(numgrad)
23. theta1 = theta;
24. theta1(i) = theta1(i)+EPSILON;
25. theta2 = theta;
26. theta2(i) = theta2(i)-EPSILON;
27.
28. numgrad(i) = (J(theta1)-J(theta2))/(2*EPSILON);
29. end
30.
31. %% ---------------------------------------------------------------
32. end
33. </span>
如果用向量化计算,几十秒钟就运算出来了,最后结果如下:
这里的每幅图像是每个隐含单元的权重表示出来了,每个隐含单元与输入层的所有节点都有权重,令这些权重的2范数为1,把权重表示图像,这样可以大概看出隐含单元总体在学习怎样的一个效果。从图中可以看出不同的隐含单元在学习不同方向和位置的边缘检测,而这个对机器视觉的检测和识别任务是很有帮助的。
在MNIST数据集上实验效果:
实验前要按照 http://ufldl.stanford.edu/wiki/index.php/Exercise:Vectorization上的说明修改参数配置,读入MNIST图像数据,运行10多分钟后的结果如下:
从上面的图看出,这些隐含单元在学习不同数字的笔划边缘。