一.增量式爬虫
概念:通过爬虫程序监测某网站数据更新的情况,以便可以爬取到该网站更新出的新数据。
如何进行增量式的爬取工作:
在发送请求之前判断这个URL是不是之前爬取过
在解析内容后判断这部分内容是不是之前爬取过
写入存储介质时判断内容是不是已经在介质中存在
分析:
不难发现,其实增量爬取的核心是去重, 至于去重的操作在哪个步骤起作用,只能说各有利弊。在我看来,前两种思路需要根据实际情况取一个(也可能都用)。第一种思路适合不断有新页面出现的网站,
比如说小说的新章节,每天的最新新闻等等;第二种思路则适合页面内容会更新的网站。第三个思路是相当于是最后的一道防线。这样做可以最大程度上达到去重的目的。
去重方法
将爬取过程中产生的url进行存储,存储在redis的set中。当下次进行数据爬取时,首先对即将要发起的请求对应的url在存储的url的set中做判断,如果存在则不进行请求,否则才进行请求。
对爬取到的网页内容进行唯一标识的制定,然后将该唯一表示存储至redis的set中。当下次爬取到网页数据的时候,在进行持久化存储之前,首先可以先判断该数据的唯一标识在redis的set中是否存在,
在决定是否进行持久化存储。
二。项目案例:
需求:爬取4567tv网站中所有的电影详情数据。
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from redis import Redis
from incrementPro.items import IncrementproItem
class MovieSpider(CrawlSpider):
name = 'movie'
# allowed_domains = ['www.xxx.com']
start_urls = ['http://www.4567tv.tv/frim/index7-11.html']
rules = (
Rule(LinkExtractor(allow=r'/frim/index7-\d+\.html'), callback='parse_item', follow=True),
)
#创建redis链接对象
conn = Redis(host='127.0.0.1',port=6379)
def parse_item(self, response):
li_list = response.xpath('//li[@class="p1 m1"]')
for li in li_list:
#获取详情页的url
detail_url = 'http://www.4567tv.tv'+li.xpath('./a/@href').extract_first()
#将详情页的url存入redis的set中
ex = self.conn.sadd('urls',detail_url)
if ex == 1:
print('该url没有被爬取过,可以进行数据的爬取')
yield scrapy.Request(url=detail_url,callback=self.parst_detail)
else:
print('数据还没有更新,暂无新数据可爬取!')
#解析详情页中的电影名称和类型,进行持久化存储
def parst_detail(self,response):
item = IncrementproItem()
item['name'] = response.xpath('//dt[@class="name"]/text()').extract_first()
item['kind'] = response.xpath('//div[@class="ct-c"]/dl/dt[4]//text()').extract()
item['kind'] = ''.join(item['kind'])
yield item
爬虫文件
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
from redis import Redis
class IncrementproPipeline(object):
conn = None
def open_spider(self,spider):
self.conn = Redis(host='127.0.0.1',port=6379)
def process_item(self, item, spider):
dic = {
'name':item['name'],
'kind':item['kind']
}
print(dic)
self.conn.lpush('movieData',dic)
return item
管道文件
需求:爬取糗事百科中的段子和作者数据。
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from incrementByDataPro.items import IncrementbydataproItem
from redis import Redis
import hashlib
class QiubaiSpider(CrawlSpider):
name = 'qiubai'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
rules = (
Rule(LinkExtractor(allow=r'/text/page/\d+/'), callback='parse_item', follow=True),
Rule(LinkExtractor(allow=r'/text/$'), callback='parse_item', follow=True),
)
#创建redis链接对象
conn = Redis(host='127.0.0.1',port=6379)
def parse_item(self, response):
div_list = response.xpath('//div[@id="content-left"]/div')
for div in div_list:
item = IncrementbydataproItem()
item['author'] = div.xpath('./div[1]/a[2]/h2/text() | ./div[1]/span[2]/h2/text()').extract_first()
item['content'] = div.xpath('.//div[@class="content"]/span/text()').extract_first()
#将解析到的数据值生成一个唯一的标识进行redis存储
source = item['author']+item['content']
source_id = hashlib.sha256(source.encode()).hexdigest()
#将解析内容的唯一表示存储到redis的data_id中
ex = self.conn.sadd('data_id',source_id)
if ex == 1:
print('该条数据没有爬取过,可以爬取......')
yield item
else:
print('该条数据已经爬取过了,不需要再次爬取了!!!')
爬虫文件
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
from redis import Redis
class IncrementbydataproPipeline(object):
conn = None
def open_spider(self, spider):
self.conn = Redis(host='127.0.0.1', port=6379)
def process_item(self, item, spider):
dic = {
'author': item['author'],
'content': item['content']
}
# print(dic)
self.conn.lpush('qiubaiData', dic)
return item
管道文件