详解列表

列表数据类型还有更多的方法。这里是列表对象方法的清单:

list.append(x)

添加一个元素到列表的末尾。相当于a[len(a):] = [x]。

list.extend(L)

将给定列表L中的所有元素附加到原列表a的末尾。相当于a[len(a):] = L。

list.insert(i, x)

在给定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,所以 a.insert(0, x) 在列表的最前面插入,a.insert(len(a), x) 相当于 a.append(x)。

list.remove(x)

删除列表中第一个值为 x 的元素。如果没有这样的元素将会报错。

list.pop([i])

删除列表中给定位置的元素并返回它。如果未指定索引,a.pop() 删除并返回列表中的最后一个元素。(i 两边的方括号表示这个参数是可选的,而不是要你输入方括号。在Python库中会经常看到这种表示方法)。

list.clear()

删除列表中所有元素。相当于del a[:]。

list.index(x)

返回列表中第一个值为x 的元素的索引。如果没有这样的元素将会报错。

list.count(x)

返回列表中 x 出现的次数。

list.sort(cmp=None, key=None, reverse=False)

原地排序列表中的元素。

list.reverse()

反转列表中的元素。

list.copy()

返回列表的一个浅拷贝。等同于a[:]。

>>> a = [66.25, 333, 333, 1, 1234.5] 
>>> print(a.count(333), a.count(66.25), a.count('x')) 
2 1 0 
>>> a.insert(2, -1) 
>>> a.append(333) 
>>> a 
[66.25, 333, -1, 333, 1, 1234.5, 333] 
>>> a.index(333) 
1 
>>> a.remove(333) 
>>> a 
[66.25, -1, 333, 1, 1234.5, 333] 
>>> a.reverse() 
>>> a 
[333, 1234.5, 1, 333, -1, 66.25] 
>>> a.sort() 
>>> a 
[-1, 1, 66.25, 333, 333, 1234.5] 
>>> a.pop() 
1234.5 
>>> a 
[-1, 1, 66.25, 333, 333]

像insert, remove 或者 sort 之类的方法只修改列表而没有返回值打印出– 它们其实返回了默认值None。[1]这是 Python 中所有可变数据结构的设计原则

将列表作为堆栈使用

列表方法使得将列表当作堆栈非常容易,最先进入的元素最后一个取出(后进先出)。使用append() 将元素添加到堆栈的顶部。使用不带索引的 pop() 从堆栈的顶部取出元素。例如:

>>> stack = [3, 4, 5] 
>>> stack.append(6) 
>>> stack.append(7) 
>>> stack 
[3, 4, 5, 6, 7] 
>>> stack.pop() 
7 
>>> stack 
[3, 4, 5, 6] 
>>> stack.pop() 
6 
>>> stack.pop() 
5 
>>> stack 
[3, 4]

将列表当做队列使用

也可以将列表当作队列使用,此时最先进入的元素第一个取出(先进先出);
但是列表用作此目的效率不高。在列表的末尾添加和弹出元素非常快,但是在列表的开头插入或弹出元素却很慢 (因为所有的其他元素必须向后移一位)。
如果要实现一个队列,可以使用collections.deque它设计的目的就是在两端都能够快速添加和弹出元素。例如:

>>> from collections import deque 
>>> queue = deque(["Eric", "John", "Michael"]) 
>>> queue.append("Terry")           # Terry arrives 
>>> queue.append("Graham")          # Graham arrives 
>>> queue.popleft()                 # The first to arrive now leaves 
'Eric' 
>>> queue.popleft()                 # The second to arrive now leaves 
'John' 
>>> queue                           # Remaining queue in order of arrival 
deque(['Michael', 'Terry', 'Graham'])

列表解析

列表解析提供了一个生成列表的简洁方法。应用程序通常会从一个序列的每个元素的操作结果生成新的列表,或者生成满足特定条件的元素的子序列。
例如:假如我们想要创建一个列表squares:

>>> squares = [] 
>>> for x in range(10): 
...     squares.append(x**2) 
... 
>>> squares 
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

注意这个for循环中的被创建(或被重写)的名为x 的变量在循环完毕后依然存在。使用如下方法,我们以计算squares的值:

squares = list(map(lambda x: x**2, range(10)))

map 函数的详细介绍如下:
Python中map()函数浅析
或者,等价地:

squares = [x**2 for x in range(10)]

列表解析由括号括起来,括号里面包含一个表达式,表达式后面跟着一个for语句,后面还可以接零个或更多的for 或if 语句。结果是一个新的列表,由表达式依据其后面的for 和if 语句上下文计算而来的结果构成。例如,下面的listcomp组合两个列表中不相等的元素:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y] 
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

它等效于:

>>> combs = [] 
>>> for x in [1,2,3]: 
...     for y in [3,1,4]: 
...         if x != y: 
...             combs.append((x, y)) 
... 
>>> combs 
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

如果表达式是一个元组(例如前面示例中的(x,y)),它必须带圆括号。

>>> vec = [-4, -2, 0, 2, 4] 
>>> # create a new list with the values doubled 
>>> [x*2 for x in vec] 
[-8, -4, 0, 4, 8] 
>>> # filter the list to exclude negative numbers 
>>> [x for x in vec if x >= 0] 
[0, 2, 4] 
>>> # apply a function to all the elements 
>>> [abs(x) for x in vec] 
[4, 2, 0, 2, 4] 
>>> # call a method on each element 
>>> freshfruit = ['  banana', '  loganberry ', 'passion fruit  '] 
>>> [weapon.strip() for weapon in freshfruit] 
['banana', 'loganberry', 'passion fruit'] 
>>> # create a list of 2-tuples like (number, square) 
>>> [(x, x**2) for x in range(6)] 
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)] 
>>> # the tuple must be parenthesized, otherwise an error is raised 
>>> [x, x**2 for x in range(6)] 
  File "<stdin>", line 1, in ? 
    [x, x**2 for x in range(6)] 
               ^ 
SyntaxError: invalid syntax 
>>> # flatten a list using a listcomp with two 'for' 
>>> vec = [[1,2,3], [4,5,6], [7,8,9]] 
>>> [num for elem in vec for num in elem] 
[1, 2, 3, 4, 5, 6, 7, 8, 9]

列表解析可以包含复杂的表达式和嵌套的函数:

>>> from math import pi 
>>> [str(round(pi, i)) for i in range(1, 6)] 
['3.1', '3.14', '3.142', '3.1416', '3.14159']

嵌套的列表解析

列表解析中的第一个表达式可以是任何表达式,包括列表解析。
考虑下面由三个长度为4的列表组成的3x4矩阵:

>>> matrix = [ 
...     [1, 2, 3, 4], 
...     [5, 6, 7, 8], 
...     [9, 10, 11, 12], 
... ]

下面的列表解析将转置行和列:

>>> [[row[i] for row in matrix] for i in range(4)] 
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

所以此例等同于:

>>> transposed = [] 
>>> for i in range(4):
...     transposed.append([row[i] for row in matrix]) 
...
>>> transposed 
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

以此下去,还等同于:

>>> transposed = [] 
>>> for i in range(4): 
...     # the following 3 lines implement the nested listcomp 
...     transposed_row = [] 
...     for row in matrix: 
...         transposed_row.append(row[i]) 
...     transposed.append(transposed_row) 
... 
>>> transposed 
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

有专门的内置函数zip()函数来做这件事:

>>> list(zip(*matrix)) 
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

关于本行中使用的星号是函数中的参数列表分拆,一个* 号是把传入的列表或元组参数拆分成一个个独立的元素,两个** 是把传入的 字典参数拆分成一个个键值对。详情请见参数列表的分拆。

del 语句

del 可以从列表中按索引而不是值来删除一个元素。这不同于有返回值的pop() 方法。del 语句还可以用于从列表中删除切片或清除整个列表。例如:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5] 
>>> del a[0] 
>>> a 
[1, 66.25, 333, 333, 1234.5] 
>>> del a[2:4] 
>>> a 
[1, 66.25, 1234.5] 
>>> del a[:]
>>> a 
[]

del 也可以用于删除整个变量:

>>> del a

删除后再引用名称a 将会报错.

元组和序列

列表和字符串具有很多共同的属性,如索引和切片操作。它们是 序列 数据类型的两个例子,下面进一步介绍另一种标准序列数据类型:元组。
元组由逗号分割的若干值组成,例如:

>>> t = 12345, 54321, 'hello!' 
>>> t[0] 
12345 
>>> t 
(12345, 54321, 'hello!') 
>>> # Tuples may be nested: 元组可以嵌套
... u = t, (1, 2, 3, 4, 5) 
>>> u 
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5)) 
>>> # Tuples are immutable: (元组是不可变的)
... t[0] = 88888 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: 'tuple' object does not support item assignment 
>>> # but they can contain mutable objects: 但可以包含易变的对象例如列表等
... v = ([1, 2, 3], [3, 2, 1]) 
>>> v 
([1, 2, 3], [3, 2, 1])

元组在输出时总是有括号的,以便于正确表达嵌套结构;在输入时括号可有可无,不过括号经常都是必须的(如果元组是一个更大的表达式的一部分)。不能给元组中单独的一个元素赋值,不过可以创建包含可变对象(例如列表)的元组。
  虽然元组看起来类似于列表,它们经常用于不同的场景和不同的目的。元组是不可变的,通常包含不同种类的元素并通过分拆或索引访问。但列表是可变的,它们的元素通常是相同类型的并通过迭代访问。
  一个特殊的情况是构造包含 0 个或 1 个元素的元组:空元组由一对空括号创建;只有一个元素的元组由值后面跟随一个逗号创建,语法有点奇怪,但是有效,例如:

#一个空元组
>>> empty = () 
>>> len(empty)
0
#有一个元素
>>> singleton = 'hello',    # 注意最后的逗号
>>> len(singleton) 
1 
>>> singleton 
('hello',)

语句t = 12345, 54321, ‘hello!’ 是一个元组封装的例子:值12345, 54321 和 ‘hello!’ 被一起放入一个元组。其逆操作(序列分拆)也是可以的:

>>> x, y, z = t

即把元组t 中的值一一赋给x,y,z,要求是等号左侧的变量和序列中的元素的数目相同。注意多重赋值(几个元素给一个元组,再拆分后给其他变量)只是同时进行元组封装和序列分拆。

集合

Python 还包含了一个数据类型——集合。
集合中的元素不会重复且没有顺序。
集合的基本用途成员测试(就是查一下这个集合中有没有某个元素,有的话返回True,无的话返回False)和消除重复条目。集合对象还支持并集、 交集、 差和对称差等数学运算。
花大括号或 set() 函数可以用于创建集合。注意: 若要创建一个空集必须使用 set(),而不能用 {};后者将创建一个空的字典
例子:

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'} 
>>> print(basket)                      # show that duplicates have been removed 
{'orange', 'banana', 'pear', 'apple'} 
>>> 'orange' in basket                 # fast membership testing 
True 
>>> 'crabgrass' in basket 
False 
>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra') 
>>> b = set('alacazam') 
>>> a                                  # unique letters in a 
{'a', 'r', 'b', 'c', 'd'} 
>>> b = {'a', 'c', 'm', 'z', 'l'}
>>> t = {'abracadabra'}
>>> t
{'abracadabra'}
#注意t和a的区别
>>> a - b                              # letters in a but not in b 
{'r', 'd', 'b'}
>>> a | b                              # letters in either a or b 
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'} 
>>a & b
{'a', 'c'}
>>> a ^ b                              # letters in a or b but not both 
{'r', 'd', 'b', 'm', 'z', 'l'} 
#就是把a b 中都有的元素去掉

和 列表解析 类似,Python 也支持集合解析:

>>> a = {x for x in 'abracadabra' if x not in 'abc'} 
>>> a 
{'r', 'd'}

字典

  Python 中内置的另一种有用的数据类型是字典。与序列不同,序列由数字做索引,字典由 键 做索引,键可以是任意不可变类型;字符串和数字永远可以拿来做键。如果元组只包含字符串、 数字或元组,它们可以用作键;如果元组直接或间接地包含任何可变对象,不能用作键。不能用列表作为键,因为列表可以用索引、切片或者 append() 和extend() 方法修改。
  理解字典的最佳方式是把它看做无序的 键:值 对集合,要求是键必须是唯一的(在同一个字典内)。一对大括号将创建一个空的字典: {}。大括号中由逗号分隔的 键:值 对将成为字典的初始值;打印字典时也是按照这种方式输出。
  字典的主要操作是依据键来存取值。也可以通过 del 删除 键: 值 对。如果用一个已经存在的键存储值,以前为该关键字分配的值就会被遗忘(释放了)。从一个不存在的键中读取值会导致错误。
**list(d.keys())返回字典中所有键组成的列表,列表的顺序是随机的(如果你想它是有序的,只需使用sorted(d.keys())代替).要检查某个键是否在字典中,可以使用 in 关键字。
例子:

>>> tel = {'jack': 4098, 'sape': 4139} 
>>> tel['guido'] = 4127 
>>> tel 
{'sape': 4139, 'guido': 4127, 'jack': 4098} 
>>> tel['jack'] 
4098 
>>> del tel['sape'] 
>>> tel['irv'] = 4127 
>>> tel 
{'guido': 4127, 'irv': 4127, 'jack': 4098} 
>>> list(tel.keys()) 
['irv', 'guido', 'jack'] 
>>> sorted(tel.keys()) 
['guido', 'irv', 'jack'] 
>>> 'guido' in tel 
True 
>>> 'jack' not in tel 
False

dict() 构造函数直接从键-值对序列创建字典:

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)]) 
{'sape': 4139, 'jack': 4098, 'guido': 4127}

此外,字典解析可以用于从任意键和值表达式创建字典:

>>> {x: x**2 for x in (2, 4, 6)} 
{2: 4, 4: 16, 6: 36}

如果键都是简单的字符串,有时通过关键字参数指定 键-值 对更为方便:

>>> dict(sape=4139, guido=4127, jack=4098) 
{'sape': 4139, 'jack': 4098, 'guido': 4127}

遍历的技巧

循环迭代字典的时候,键和对应的值通过使用items()方法可以同时得到。

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'} 
>>> for k, v in knights.items():
...     print(k, v)
...
gallahad the pure 
robin the brave

序列中遍历时,使用 enumerate() 函数可以同时得到索引和对应的值。

>>> for i, v in enumerate(['tic', 'tac', 'toe']): 
...     print(i, v) 
... 
0 tic 
1 tac 
2 toe

同时遍历两个或更多的序列,使用 zip() 函数可以成对读取元素。

>>> questions = ['name', 'quest', 'favorite color'] 
>>> answers = ['lancelot', 'the holy grail', 'blue'] 
>>> for q, a in zip(questions, answers): 
...     print('What is your {0}?  It is {1}.'.format(q, a)) 
... 
What is your name?  It is lancelot. 
What is your quest?  It is the holy grail. 
What is your favorite color?  It is blue.

要反向遍历一个序列,首先正向生成这个序列,然后调用 reversed() 函数。

>>> for i in reversed(range(1, 10, 2)): 
...     print(i) 
... 
9 
7 
5 
3 
1

循环一个序列并且把它按照顺序排序,结果是返回一个新的排序列表,同时源没有改变。
例如:

basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'] 
>>> for f in sorted(basket):
...     print(f)
... 
apple
apple
banana
orange
orange
pear
>>> basket
['apple', 'orange', 'apple', 'pear', 'orange', 'banana']

若要在循环内部修改正在遍历的序列(插入、删除、修改等),建议首先制作副本。在序列上循环不会隐式地创建副本。切片表示法使这尤其方便:
例如:

>>> words = ['cat', 'window', 'defenestrate'] 
>>> for w in words[:]:  # Loop over a slice copy of the entire list. 
...     if len(w) > 6:
...         words.insert(0, w) 
...
>>> words 
['defenestrate', 'cat', 'window', 'defenestrate']

深入条件控制

while 和if 语句使用的条件可以包含任意的操作,而不仅仅是比较。
比较操作符in 和 not In 检查一个值是否在一个序列中出现;is 和is not 比较两个对象是否为同一个对象;但这只和列表这样的可变对象有关。所有比较运算符都具有相同的优先级,低于所有数值运算符。
可以级联比较。例如, a < b == c 测试 a 是否小于 b 并且 b 等于 c。
and和or 用于比较,比较的结果是一个bool值,可以用not 取反,这些操作符的优先级又低于比较运算符;它们之间,not 优先级最高,or 优先级最低,所以A and not B or C 等效于(A and (not B)) or C 。
and 和or 是所谓的短路运算符;依参数从坐向右求值,结果一旦确定就停止。例如:如果A和C都是真,但B是假,A and B and C 将不计算表达式C。短路操作符的返回值通常是最后一个计算的。
例如:

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance' 
>>> non_null = string1 or string2 or string3 
>>> non_null 
'Trondheim'

注意: 这里返回的是最后一个计算的值,和其他语言不太相同,其他语言一般返回的是true 或false

序列和其它类型的比较

序列对象可以与具有相同序列类型的其他对象比较。比较的时候字符串按照字典序比较,数字按照从小到大的顺序比较,首先是两个序列最前面的元素进行比较,如果不同,就决定了比较的结果;如果相同就比较接下来的两个元素,依次类推,直到其中一个序列穷举完。如果两个序列的所有元素都相等,就认为序列相等。如果一个序列是另一个的初始子序列,较短的序列就小于另一个。
例子:

(1, 2, 3)              < (1, 2, 4) 
[1, 2, 3]              < [1, 2, 4] 
'ABC' < 'C' < 'Pascal' < 'Python' 
(1, 2, 3, 4)           < (1, 2, 4) 
(1, 2)                 < (1, 2, -1) 
(1, 2, 3)             == (1.0, 2.0, 3.0) 
(1, 2, ('aa', 'ab'))   < (1, 2, ('abc', 'a'), 4)

注意:使用 < 或者 > 比较不同类型的对象是合法的,只要这些对象具有合适的比较方法。例如:不同的数字类型按照它们的数值比较,所以0 等于 0.0,等等。否则,解释器将引发一个TypeError 异常,而不是随便给一个顺序。
注: 调用d.keys() 会返回一个字典视图对象。该对象支持成员查询和迭代操作,但它的内容依赖原字典——它只是一个视图。
例:

>>> for item in x.keys():
...     print(item)
... 
a
b
c
>>> for item in x.keys():
...     print(x[item])
... 
apple
orange
pear

x.keys 中只有键没有值。值还要从x 字典中取。