计算图像相似度的算法有哪些
SIM=StructuralSIMilarity(结构相似性),这是一种用来评测图像质量的一种方法。
由于人类视觉很容易从图像中抽取出结构信息,因此计算两幅图像结构信息的相似性就可以用来作为一种检测图像质量的好坏.首先结构信息不应该受到照明的影响,因此在计算结构信息时需要去掉亮度信息,即需要减掉图像的均值;其次结构信息不应该受到图像对比度的影响,因此计算结构信息时需要归一化图像的方差;最后我们就可以对图像求取结构信息了,通常我们可以简单地计算一下这两幅处理后的图像的相关系数.然而图像质量的好坏也受到亮度信息和对比度信息的制约,因此在计算图像质量好坏时,在考虑结构信息的同时也需要考虑这两者的影响.通常使用的计算方法如下,其中C1,C2,C3用来增加计算结果的稳定性:2u(x)u(y)+C1L(X,Y)=------------------------,u(x),u(y)为图像的均值u(x)^2+u(y)^2+C12d(x)d(y)+C2C(X,Y)=------------------------,d(x),d(y)为图像的方差d(x)^2+d(y)^2+C2d(x,y)+C3S(X,Y)=----------------------,d(x,y)为图像x,y的协方差d(x)d(y)+C3而图像质量Q=[L(X,Y)^a]x[C(X,Y)^b]x[S(X,Y)^c],其中a,b,c分别用来控制三个要素的重要性,为了计算方便可以均选择为1,C1,C2,C3为比较小的数值,通常C1=(K1xL)^2,C2=(K2xL)^2,C3=C2/2,K1。
谷歌人工智能写作项目:小发猫
C#怎么来判断2张图片相似度
很麻烦,而且计算量很大,这个属于人工智能的范畴深度神经网络的主要模型,最大的神经网络模型。如果这“两张相似图片”可以规定很多前提,比如相同分辨率,黑白,简单几何图形。。。
那么可以用基本的算法去算一下“相似度”,也就是楼上说的,读取两张照片的像素点,然后遍历去对比灰度差值。
这些有很多现成的算法,也有很多网站提供这方面的计算(直接调用API即可),但是只能得出数字化的“相似度”。如果你要的就是两张图片像素点之间的差异,那么就去找算法即可实现。
看一参考这个网站:这个是国外比较知名的图像处理的网站。但是,两张图片如果尺寸不一呢?如果比例不一样呢?如果有留白呢?彩色的呢?
所以目前最成熟的编程算法也就是识别一下字母和数字(比如谷歌可以识别照片上的门牌号和街道号),人脸识别也只是拿几个标本部位来大致判断相似度(眼睛的大小,鼻梁的高度,脸颊的宽瘦和比例),以人眼的标准完整的去比较两张图片是否一样是很难的,目前应该还没有这方面成熟的技术。
C#灰度图像通过相似度算法找出相似度最高的图片
。
这种以图搜图可以用感知哈希算法,第一步缩小图片尺寸将图片缩小到8x8的尺寸,总共64个像素.这一步的作用是去除各种图片尺寸和图片比例的差异,只保留结构、明暗等基本信息.第二步转为灰度图片将缩小后的图片,转为64级灰度图片.第三步计算灰度平均值计算图片中所有像素的灰度平均值第四步比较像素的灰度将每个像素的灰度与平均值进行比较,如果大于或等于平均值记为1,小于平均值记为0.第五步计算哈希值将上一步的比较结果,组合在一起,就构成了一个64位的二进制整数,这就是这张图片的指纹.第六步对比图片指纹得到图片的指纹后,就可以对比不同的图片的指纹,计算出64位中有多少位是不一样的.如果不相同的数据位数不超过5,就说明两张图片很相似,如果大于10,说明它们是两张不同的图片.具体的c#代码可以看using System;using ;using System.Drawing; namespace SimilarPhoto{ class SimilarPhoto { Image SourceImg; public SimilarPhoto(string filePath) { SourceImg = Image.FromFile(filePath); } public SimilarPhoto(Stream stream) { SourceImg = Image.FromStream(stream); } public String GetHash() { Image image = ReduceSize(); Byte[] grayValues = ReduceColor(image); Byte average = CalcAverage(grayValues); String reslut = ComputeBits(grayValues, average); return reslut; } // Step 1 : Reduce size to 8*8 private Image ReduceSize(int width = 8, int height = 8) { Image image = SourceImg.GetThumbnailImage(width, height, () => { return false; }, ); return image; } // Step 2 : Reduce Color private Byte[] ReduceColor(Image image) { Bitmap bitMap = new Bitmap(image); Byte[] grayValues = new Byte[image.Width * image.Height]; for(int x = 0; x。
正在在毕设,请问用VC++处理图像相似度的算法 5
。
建议你找一本vc++图形图像编程的书,在前面的几章都会讲怎么取图像数据,都有事例代码,其实说起来也很简单,就是通过api把数据部分从图像文件里取出来,然后根据图像的调色板转成颜色数据,我推荐你找周长发的vc++图形图像处理,所有事例都有代码并且可以直接使用,里面的代码虽然执行效率不高,但是结构非常清晰,适合学习使用。
用matlab算矩阵相似度
图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。
可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。
已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。还有一方面就是基于图像内容的图像检索,也就是通常说的以图检图。
比如给你某一个人在海量的图像数据库中罗列出与之最匹配的一些图像,当然这项技术可能也会这样做,将图像抽象为几个特征值,比如Trace变换,图像哈希或者Sift特征向量等等,来根据数据库中存得这些特征匹配再返回相应的图像来提高效率。
(1)直方图匹配。比如有图像A和图像B,分别计算两幅图像的直方图,HistA,HistB,然后计算两个直方图的归一化相关系数(巴氏距离,直方图相交距离)等等。
这种思想是基于简单的数学上的向量之间的差异来进行图像相似程度的度量,这种方法是目前用的比较多的一种方法,第一,直方图能够很好的归一化,比如通常的256个bin条的。
那么两幅分辨率不同的图像可以直接通过计算直方图来计算相似度很方便。而且计算量比较小。