实现一个矩阵类,重载下标操作符, 即 m[i][j], 以及其它运算符
1:2: //重载下标操作符, m[i][j], 方法1:3: #pragma once4: #include <iostream>5: #include <cstddef>6: #include <cassert>7:8: template<typename T, std::size_t ROW = 10, std::size_t COLUMN = 10>9: class Matrix10: {11: private:12: std::size_t _ROW;13: std::size_t _COLUMN;14: T* pData;15:16: public:17: Matrix();18: Matrix(std::size_t M, std::size_t N);19: ~Matrix();20:21: //重载下标运算符,实现 a[m][n]22: T* operator[](std::size_t m);23: const T* operator[](std::size_t m) const;24:25: //提供 a(m, n) 这样的操作26: T& operator()(std::size_t m, std::size_t n);27: const T& operator()(std::size_t m, std::size_t n) const;28:29: //拷贝构造30: Matrix(const Matrix<T>& m);31: //重载 =32: Matrix<T>& operator=(const Matrix<T>& m);33:34: //重载 +=35: Matrix<T>& operator+=(const Matrix<T>& m);36:37: //重载 +, -, *38: Matrix<T> operator+(const Matrix<T>& m);39: Matrix<T> operator-(const Matrix<T>& m);40: Matrix<T> operator*(const Matrix<T>& m);41:42: //矩阵转置 !43: Matrix<T> operator!();44:45: //求反 -46: Matrix<T>& operator-();47:48: //显示矩阵49: void displayMatrix() const;50:51: //取得行, 列的大小52: const std::size_t getRow() const;53: const std::size_t getColumn() const;54:55: //注: 重载 << 时, template<typename T1> 必须和 模板类中的类型不一样56: template<typename T1>57: friend std::ostream& operator<<(std::ostream& os, const Matrix<T1>& m);58: };59:60: //默认构造函数61: template<typename T, std::size_t ROW, std::size_t COLUMN>62: Matrix<T, ROW, COLUMN>::Matrix():_ROW(ROW),_COLUMN(COLUMN)63: {64: pData = new T[_ROW*_COLUMN];65: assert(pData);66: memset(pData, 0, _ROW*_COLUMN*sizeof(T));67: }68: //有参构造函数69: template<typename T, std::size_t ROW, std::size_t COLUMN>70: Matrix<T, ROW, COLUMN>::Matrix(std::size_t M, std::size_t N)71: :_ROW(M), _COLUMN(N)72: {73: pData = new T[_ROW*_COLUMN];74: assert(pData);75: memset(pData, 0, _ROW*_COLUMN*sizeof(T));76: }77:78: //析构函数79: template<typename T, std::size_t ROW, std::size_t COLUMN>80: Matrix<T, ROW, COLUMN>::~Matrix()81: {82: if(pData)83: delete []pData;84: pData = NULL;85: }86: //拷贝构造87: template<typename T, std::size_t ROW, std::size_t COLUMN>88: Matrix<T, ROW, COLUMN>::Matrix(const Matrix<T>& m)89: {90: _ROW = m.getRow();91: _COLUMN = m.getColumn();92: pData = new T[_ROW*_COLUMN];93: assert(pData);94: memcpy(pData, m.pData, _ROW*_COLUMN*sizeof(T));95: }96: //重载下标操作符97: //a[m][n], a[m] 首先调用此重载运算符, 返回指针 (pData + m*_COLUMN)98: //然后进行正常的指针运算 (pData + m*_COLUMN)[n]99: template<typename T, std::size_t ROW, std::size_t COLUMN>100: T* Matrix<T, ROW, COLUMN>::operator[](std::size_t m)101: {102: assert(m >= 0 && m < _ROW);103: return (pData + m*_COLUMN);104: }105: //for const class106: template<typename T, std::size_t ROW, std::size_t COLUMN>107: const T* Matrix<T, ROW, COLUMN>::operator[](std::size_t m) const108: {109: assert(m >= 0 && m < _ROW);110: return (pData + m*_COLUMN);111: //return operator[](m);112: }//*/113: //a(m,n)114: template<typename T, std::size_t ROW, std::size_t COLUMN>115: T& Matrix<T, ROW, COLUMN>::operator()(std::size_t m, std::size_t n)116: {117: assert(m < _ROW && m >= 0 && n < _COLUMN && n >= 0);118: return (pData + m*_COLUMN)[n];119: }120: //for const class121: template<typename T, std::size_t ROW, std::size_t COLUMN>122: const T& Matrix<T, ROW, COLUMN>::operator()123: (std::size_t m, std::size_t n) const124: {125: assert(m < _ROW && m >= 0 && n < _COLUMN && n >= 0);126: return (pData + m*_COLUMN)[n];127: }//*/128:129: //查看行列值130: template<typename T, std::size_t ROW, std::size_t COLUMN>131: const std::size_t Matrix<T, ROW, COLUMN>::getRow() const132: {133: return _ROW;134: }135: template<typename T, std::size_t ROW, std::size_t COLUMN>136: const std::size_t Matrix<T, ROW, COLUMN>::getColumn() const137: {138: return _COLUMN;139: }140:141: //输出整个矩阵142: template<typename T, std::size_t ROW, std::size_t COLUMN>143: void Matrix<T, ROW, COLUMN>::displayMatrix() const144: {145: std::cout << std::endl << "Now The Matrix is: " << std::endl;146: for(std::size_t i = 0; i < _ROW; i++)147: for(std::size_t j = 0; j < _COLUMN; j++)148: {149: std::cout << *(pData+i*_COLUMN+j) << " ";150: if(j == _COLUMN - 1)151: std::cout << std::endl;152: }153: std::cout << std::endl;154: }155: //重载 =156: template<typename T, std::size_t ROW, std::size_t COLUMN>157: Matrix<T>& Matrix<T, ROW, COLUMN>::operator=(const Matrix<T>& m)158: {159: if(this == &m)160: return *this;161: assert(_ROW == m.getRow() && _COLUMN == m.getColumn());162: for(std::size_t i = 0; i < _ROW; i++)163: for(std::size_t j = 0; j < _COLUMN; j++)164: {165: operator()(i, j) = m(i, j);166: }167:168: return *this;169: }170: //重载 +=171: template<typename T, std::size_t ROW, std::size_t COLUMN>172: Matrix<T>& Matrix<T, ROW, COLUMN>::operator+=(const Matrix<T>& m)173: {174: assert(_ROW == m.getRow() && _COLUMN == m.getColumn());175: for(std::size_t i = 0; i < _ROW; i++)176: for(std::size_t j = 0; j < _COLUMN; j++)177: {178: operator()(i, j) += m(i, j);179: }180: return *this;181: }182: //operator+(const Matrix<T>& m)183: template<typename T, std::size_t ROW, std::size_t COLUMN>184: Matrix<T> Matrix<T, ROW, COLUMN>::operator+(const Matrix<T>& m)185: {186: assert(_ROW == m.getRow() && _COLUMN == m.getColumn());187: Matrix<T, ROW, COLUMN> matrix;188: for(std::size_t i = 0; i < _ROW; i++)189: for(std::size_t j = 0; j < _COLUMN; j++)190: {191: matrix(i, j) = operator()(i, j) + m(i, j);192: }193: return matrix;194: }195: //operator-()196: template<typename T, std::size_t ROW, std::size_t COLUMN>197: Matrix<T>& Matrix<T, ROW, COLUMN>::operator-()198: {199: for(std::size_t i = 0; i < _ROW; i++)200: for(std::size_t j = 0; j < _COLUMN; j++)201: {202: operator()(i, j) = -operator()(i, j);203: }204: return *this;205: }206: //operator*()207: template<typename T, std::size_t ROW, std::size_t COLUMN>208: Matrix<T> Matrix<T, ROW, COLUMN>::operator*(const Matrix<T>& m)209: {210: assert(_ROW == m.getRow() && _COLUMN == m.getColumn());211: Matrix<T, ROW, COLUMN> matrix;212: for(std::size_t i = 0; i < _ROW; i++)213: for(std::size_t j = 0; j < _COLUMN; j++)214: {215: matrix(i, j) = operator()(i, j) * m(i, j);216: }217: return matrix;218: }219: //矩阵转置 operator!()220: template<typename T, std::size_t ROW, std::size_t COLUMN>221: Matrix<T> Matrix<T, ROW, COLUMN>::operator!()222: {223: Matrix<T, ROW, COLUMN> matrix;224: for(std::size_t i = 0; i < _ROW; i++)225: for(std::size_t j = 0; j < _COLUMN; j++)226: {227: matrix(i, j) = (*this)(j, i);228: }229: return matrix;230: }231:232: //for cout << matrix;233: template<typename T1>234: std::ostream& operator<<(std::ostream& os, const Matrix<T1>& m)235: {236: if(m.getRow() <= 0 || m.getColumn() <= 0)237: return os;238: for(std::size_t i = 0; i < m.getRow(); i++)239: for(std::size_t j = 0; j < m.getColumn(); j++)240: {241: os << m(i, j) << " ";242: if(j == m.getColumn() - 1)243: os << std::endl;244: }245: return os;246: }
1: //重载下标操作符, m[i][j], 方法2:2: //使用代理类. 定义两个类,当第一个类调用重载的操作符时,使此函数返回3: //第二个类的对象,在第二个类中,同样定义了运算符 [] 重载。但在第一个4: //类中的重载操作符要能访问第二个类的私有成员,那么就应该把第一个类声明5: //为第二个类的友元。6: //----7: //每个MatrixBody对象扮演的是一个一维数组,而这个一维数组没有在使用Matrixs的8: //程序中出现。扮演其它对象的对象通常被称为代理类。在这个例子里,MatrixBody是9: //一个代理类。它的实例扮演的是一个在概念上不存在的一维数组。10: //代理类的概念见: More Effective C++ Item M30:代理类11: #pragma once12: #include <iostream>13: #include <cstddef>14: #include <cassert>15:16: template <typename T>17: class Matrixs18: {19: class MatrixBody20: {21: friend class Matrixs<T>;22: private:23: T* _pData;24: std::size_t _Rows;25: std::size_t _Column;26: std::size_t _CurrentRow; //当前行27:28: MatrixBody(std::size_t row, std::size_t column);29:30: public:31: T& operator[](std::size_t j);32: const T& operator[](std::size_t j) const;33: ~MatrixBody();34: }mBody;35:36: public:37: Matrixs(std::size_t row, std::size_t column)38: :mBody(row, column)39: { }40:41:42: //[] 返回第二个类的对象43: MatrixBody& operator[](std::size_t i);44: const MatrixBody& operator[](std::size_t i) const;45:46: //输出矩阵内容47: void displayMatrix() const;48:49: };50:51: //代理类构造函数52: template <typename T>53: Matrixs<T>::MatrixBody::MatrixBody(std::size_t row, std::size_t column)54: {55: _Rows = row;56: _Column = column;57: _CurrentRow = -1;58: _pData = new T[_Rows*_Column];59: assert(_pData != NULL);60: memset(_pData, 0, _Rows*_Column*sizeof(T));61: }62: //代理类的下标重载符63: template <typename T>64: T& Matrixs<T>::MatrixBody::operator[](std::size_t j)65: {66: bool row_error = false;67: bool column_error = false;68: try69: {70: if(_CurrentRow < 0 || _CurrentRow >= _Rows)71: row_error = true;72: if(j < 0 || j >= _Column)73: column_error = true;74: if(row_error || column_error)75: throw 'e';76: }77: catch(char)78: {79: if(row_error)80: cerr << "Row access invalid!" << _CurrentRow << endl;81: if(column_error)82: cerr << "Column access invalid!" << j << endl;83: }84:85: return _pData[_CurrentRow*_Column + j];86: }87:88: //代理类析构函数89: template <typename T>90: Matrixs<T>::MatrixBody::~MatrixBody()91: {92: if(_pData != NULL)93: delete []_pData;94: _pData = NULL;95: }96:97: //矩阵类下标重载符[] //模板的语法实在是太奇怪了,注意下面必须有 typename98: template<typename T>99: typename Matrixs<T>::MatrixBody& Matrixs<T>::operator[](std::size_t i)100: {101: mBody._CurrentRow = i;102: return mBody;103: }104:105: template <typename T>106: const typename Matrixs<T>::MatrixBody& Matrixs<T>::operator[](std::size_t i) const107: {108: mBody._CurrentRow = i;109: return mBody;110: //operator[](i);111: }112:113: //输出矩阵内容114: template <typename T>115: void Matrixs<T>::displayMatrix() const116: {117: std::cout << std::endl << "Now The Matrix is: " << std::endl;118: for(std::size_t i = 0; i < mBody._Rows; i++)119: {120: for(std::size_t j = 0; j < mBody._Column; j++)121: {122: std::cout << *(mBody._pData+i*mBody._Column+j) << " ";123:124: if(j == mBody._Column - 1)125: std::cout << std::endl;126: }127: }128: std::cout << std::endl;129: }
1: //test for Matrix class2: #include "MatrixClass.h"3: #include "MatrixClass1.h"4: #include <iostream>5:6: int main()7: {8:9: //指定矩阵大小10: Matrix<int, 6, 5> matrix;11: std::cout << "ROW = " << matrix.getRow() << " "12: << "COLUMN = " << matrix.getColumn() << std::endl;13: matrix.displayMatrix();14: matrix[1][2] = 5;15: std::cout << "matirx[1][2] = " << matrix[1][2] << std::endl;16: matrix[5][4] = 6;17: std::cout << "matirx[5][4] = " << matrix[5][4] << std::endl;18: //matrix[6][4] = 3; //溢出19: matrix.displayMatrix();20: matrix(3, 3) = matrix[5][4];21: matrix.displayMatrix();22:23: //采用默认构造参数,默认大小24: Matrix<int> matrix1;25: matrix.displayMatrix();26: matrix1[3][4] = 5;27: std::cout << "ROW = " << matrix1.getRow() << " "28: << "COLUMN = " << matrix1.getColumn() << std::endl;29: std::cout << "matirx1[3][4] = " << matrix1[3][4] << std::endl;30: std::cout << "matirx1[3][3] = " << matrix1[3][3] << std::endl;31: matrix1.displayMatrix();//*/32:33: //test for +=34: Matrix<int> matrix2;35: matrix2[3][4] = 2;36: matrix2[1][4] = 3;37: matrix2.displayMatrix();38: std::cout << "Test for the operator+=(): ";39: matrix2 += matrix1; //*/40: matrix2.displayMatrix();41:42: //test for operator-()43: std::cout << "Test for operator-(): ";44: -matrix2;45: matrix2.displayMatrix();46:47: //test for opeartor+() and =48: std::cout << "Test for operator+() and operator=(): ";49: matrix1 = matrix2;50: matrix1 = matrix1 + matrix2;51: matrix1.displayMatrix();52:53: //test for opeartor!()54: std::cout << "Test for operator!(): ";55: matrix2 = !matrix1;56: matrix2.displayMatrix();57:58: std::cout << "Test for cout << matrix : " << std::endl;;59: std::cout << matrix2 << endl;60:61: //测试代理类62: std::cout << "Test for the proxy class: ";63: Matrixs<int> a(5,5);64: a.displayMatrix();65: a[2][1] = 3;66: a.displayMatrix();67:68: return 0;69: }
1: //test for Matrix class2: #include "MatrixClass.h"3: #include "MatrixClass1.h"4: #include <iostream>5:6: int main()7: {8:9: //指定矩阵大小10: Matrix<int, 6, 5> matrix;11: std::cout << "ROW = " << matrix.getRow() << " "12: << "COLUMN = " << matrix.getColumn() << std::endl;13: matrix.displayMatrix();14: matrix[1][2] = 5;15: std::cout << "matirx[1][2] = " << matrix[1][2] << std::endl;16: matrix[5][4] = 6;17: std::cout << "matirx[5][4] = " << matrix[5][4] << std::endl;18: //matrix[6][4] = 3; //溢出19: matrix.displayMatrix();20: matrix(3, 3) = matrix[5][4];21: matrix.displayMatrix();22:23: //采用默认构造参数,默认大小24: Matrix<int> matrix1;25: matrix.displayMatrix();26: matrix1[3][4] = 5;27: std::cout << "ROW = " << matrix1.getRow() << " "28: << "COLUMN = " << matrix1.getColumn() << std::endl;29: std::cout << "matirx1[3][4] = " << matrix1[3][4] << std::endl;30: std::cout << "matirx1[3][3] = " << matrix1[3][3] << std::endl;31: matrix1.displayMatrix();//*/32:33: //test for +=34: Matrix<int> matrix2;35: matrix2[3][4] = 2;36: matrix2[1][4] = 3;37: matrix2.displayMatrix();38: std::cout << "Test for the operator+=(): ";39: matrix2 += matrix1; //*/40: matrix2.displayMatrix();41:42: //test for operator-()43: std::cout << "Test for operator-(): ";44: -matrix2;45: matrix2.displayMatrix();46:47: //test for opeartor+() and =48: std::cout << "Test for operator+() and operator=(): ";49: matrix1 = matrix2;50: matrix1 = matrix1 + matrix2;51: matrix1.displayMatrix();52:53: //test for opeartor!()54: std::cout << "Test for operator!(): ";55: matrix2 = !matrix1;56: matrix2.displayMatrix();57:58: std::cout << "Test for cout << matrix : " << std::endl;;59: std::cout << matrix2 << endl;60:61: //测试代理类62: std::cout << "Test for the proxy class: ";63: Matrixs<int> a(5,5);64: a.displayMatrix();65: a[2][1] = 3;66: a.displayMatrix();67:68: return 0;69: }
使用 C++ 实现二维数组, 主要有如下不同的方法,程序中使用的是第一种:
//不同的方法创建一个 m[3][5]
//1):
int* m1 = new int[3*5];
delete []m1;
//点:调用不够直观
//优点:连续储存,n 可以不是已知
//2):
int (*m2)[5] = new int[3][5];
delete []m2;
//缺点:n 必须是已知
//优点:调用直观,连续储存,程序简洁(经过测试,析构函数能正确调用)
//3):
int** m3 = new int*[3];
for(int i = 0; i < 3; i++)
m3[i] = new int[5];
for(int i = 0; i < 3; i++)
delete []m3[i];
delete []m3;
//缺点:非连续储存,程序烦琐,m3 为 A** 类型
//优点:调用直观,n 可以不是已知
//4):
vector< vector<int> > m4;
m4.resize(3);
for(int i = 0; i < 5; i++)
m4.resize(5);
//缺点:非连续储存,调试不够方便,编译速度下降,程序膨胀(实际速度差别不大)
//优点:调用直观,自动析构与释放内存,可以调用 stl 相关函数,动态增长
//5):
vector< vector<int> > m5;
m5.resize(3*5);
//方法 1, 4 的结合
//6): 3) 的改进
int** m6 = new int*[3];
m6[0] = new int[3*5];
for(int i = 1; i < 3; i++)
m6[i] = m6[i-1] + 5;
//优点: 连续存储, n 可以不是已知, 析构方便