实现一个矩阵类,重载下标操作符, 即 m[i][j],  以及其它运算符

1:2:  //重载下标操作符, m[i][j], 方法1:3:  #pragma once4:  #include <iostream>5:  #include <cstddef>6:  #include <cassert>7:8:  template<typename T, std::size_t ROW = 10, std::size_t COLUMN = 10>9:  class Matrix10:  {11:  private:12:      std::size_t _ROW;13:      std::size_t _COLUMN;14:      T* pData;15:16:  public:17:      Matrix();18:      Matrix(std::size_t M, std::size_t N);19:      ~Matrix();20:21:      //重载下标运算符,实现 a[m][n]22:      T* operator[](std::size_t m);23:      const T* operator[](std::size_t m) const;24:25:      //提供 a(m, n) 这样的操作26:      T& operator()(std::size_t m, std::size_t n);27:      const T& operator()(std::size_t m, std::size_t n) const;28:29:      //拷贝构造30:      Matrix(const Matrix<T>& m);31:      //重载 =32:      Matrix<T>& operator=(const Matrix<T>& m);33:34:      //重载 +=35:      Matrix<T>& operator+=(const Matrix<T>& m);36:37:      //重载 +, -, *38:      Matrix<T> operator+(const Matrix<T>& m);39:      Matrix<T> operator-(const Matrix<T>& m);40:      Matrix<T> operator*(const Matrix<T>& m);41:42:      //矩阵转置 !43:      Matrix<T> operator!();44:45:      //求反 -46:      Matrix<T>& operator-();47:48:      //显示矩阵49:      void displayMatrix() const;50:51:      //取得行, 列的大小52:      const std::size_t getRow() const;53:      const std::size_t getColumn() const;54:55:      //注: 重载 << 时, template<typename T1> 必须和 模板类中的类型不一样56:      template<typename T1>57:      friend std::ostream& operator<<(std::ostream& os, const Matrix<T1>& m);58:  };59:60:  //默认构造函数61:  template<typename T, std::size_t ROW, std::size_t COLUMN>62:  Matrix<T, ROW, COLUMN>::Matrix():_ROW(ROW),_COLUMN(COLUMN)63:  {64:      pData = new T[_ROW*_COLUMN];65:      assert(pData);66:      memset(pData, 0, _ROW*_COLUMN*sizeof(T));67:  }68:  //有参构造函数69:  template<typename T, std::size_t ROW, std::size_t COLUMN>70:  Matrix<T, ROW, COLUMN>::Matrix(std::size_t M, std::size_t N)71:                      :_ROW(M), _COLUMN(N)72:  {73:      pData = new T[_ROW*_COLUMN];74:      assert(pData);75:      memset(pData, 0, _ROW*_COLUMN*sizeof(T));76:  }77:78:  //析构函数79:  template<typename T, std::size_t ROW, std::size_t COLUMN>80:  Matrix<T, ROW, COLUMN>::~Matrix()81:  {82:      if(pData)83:          delete []pData;84:      pData = NULL;85:  }86:  //拷贝构造87:  template<typename T, std::size_t ROW, std::size_t COLUMN>88:  Matrix<T, ROW, COLUMN>::Matrix(const Matrix<T>& m)89:  {90:      _ROW = m.getRow();91:      _COLUMN = m.getColumn();92:      pData = new T[_ROW*_COLUMN];93:      assert(pData);94:      memcpy(pData, m.pData, _ROW*_COLUMN*sizeof(T));95:  }96:  //重载下标操作符97:  //a[m][n], a[m] 首先调用此重载运算符, 返回指针 (pData + m*_COLUMN)98:  //然后进行正常的指针运算 (pData + m*_COLUMN)[n]99:  template<typename T, std::size_t ROW, std::size_t COLUMN>100:  T* Matrix<T, ROW, COLUMN>::operator[](std::size_t m)101:  {102:      assert(m >= 0 && m < _ROW);103:      return (pData + m*_COLUMN);104:  }105:  //for const class106:  template<typename T, std::size_t ROW, std::size_t COLUMN>107:  const T* Matrix<T, ROW, COLUMN>::operator[](std::size_t m) const108:  {109:      assert(m >= 0 && m < _ROW);110:      return (pData + m*_COLUMN);111:      //return operator[](m);112:  }//*/113:  //a(m,n)114:  template<typename T, std::size_t ROW, std::size_t COLUMN>115:  T& Matrix<T, ROW, COLUMN>::operator()(std::size_t m, std::size_t n)116:  {117:      assert(m < _ROW && m >= 0 && n < _COLUMN && n >= 0);118:      return (pData + m*_COLUMN)[n];119:  }120:  //for const class121:  template<typename T, std::size_t ROW, std::size_t COLUMN>122:  const T& Matrix<T, ROW, COLUMN>::operator()123:          (std::size_t m, std::size_t n) const124:  {125:      assert(m < _ROW && m >= 0 && n < _COLUMN && n >= 0);126:      return (pData + m*_COLUMN)[n];127:  }//*/128:129:  //查看行列值130:  template<typename T, std::size_t ROW, std::size_t COLUMN>131:  const std::size_t Matrix<T, ROW, COLUMN>::getRow() const132:  {133:      return _ROW;134:  }135:  template<typename T, std::size_t ROW, std::size_t COLUMN>136:  const std::size_t Matrix<T, ROW, COLUMN>::getColumn() const137:  {138:      return _COLUMN;139:  }140:141:  //输出整个矩阵142:  template<typename T, std::size_t ROW, std::size_t COLUMN>143:  void Matrix<T, ROW, COLUMN>::displayMatrix() const144:  {145:      std::cout << std::endl << "Now The Matrix is: " << std::endl;146:      for(std::size_t i = 0; i < _ROW; i++)147:          for(std::size_t j = 0; j < _COLUMN; j++)148:          {149:              std::cout << *(pData+i*_COLUMN+j) << " ";150:              if(j == _COLUMN - 1)151:                  std::cout << std::endl;152:          }153:      std::cout << std::endl;154:  }155:  //重载 =156:  template<typename T, std::size_t ROW, std::size_t COLUMN>157:  Matrix<T>& Matrix<T, ROW, COLUMN>::operator=(const Matrix<T>& m)158:  {159:      if(this == &m)160:          return *this;161:      assert(_ROW == m.getRow() && _COLUMN == m.getColumn());162:      for(std::size_t i = 0; i < _ROW; i++)163:          for(std::size_t j = 0; j < _COLUMN; j++)164:          {165:              operator()(i, j) = m(i, j);166:          }167:168:      return *this;169:  }170:  //重载 +=171:  template<typename T, std::size_t ROW, std::size_t COLUMN>172:  Matrix<T>& Matrix<T, ROW, COLUMN>::operator+=(const Matrix<T>& m)173:  {174:      assert(_ROW == m.getRow() && _COLUMN == m.getColumn());175:      for(std::size_t i = 0; i < _ROW; i++)176:          for(std::size_t j = 0; j < _COLUMN; j++)177:          {178:              operator()(i, j) += m(i, j);179:          }180:      return *this;181:  }182:  //operator+(const Matrix<T>& m)183:  template<typename T, std::size_t ROW, std::size_t COLUMN>184:  Matrix<T> Matrix<T, ROW, COLUMN>::operator+(const Matrix<T>& m)185:  {186:      assert(_ROW == m.getRow() && _COLUMN == m.getColumn());187:      Matrix<T, ROW, COLUMN> matrix;188:      for(std::size_t i = 0; i < _ROW; i++)189:          for(std::size_t j = 0; j < _COLUMN; j++)190:          {191:              matrix(i, j) = operator()(i, j) + m(i, j);192:          }193:      return matrix;194:  }195:  //operator-()196:  template<typename T, std::size_t ROW, std::size_t COLUMN>197:  Matrix<T>& Matrix<T, ROW, COLUMN>::operator-()198:  {199:      for(std::size_t i = 0; i < _ROW; i++)200:          for(std::size_t j = 0; j < _COLUMN; j++)201:          {202:              operator()(i, j) =     -operator()(i, j);203:          }204:      return *this;205:  }206:  //operator*()207:  template<typename T, std::size_t ROW, std::size_t COLUMN>208:  Matrix<T> Matrix<T, ROW, COLUMN>::operator*(const Matrix<T>& m)209:  {210:      assert(_ROW == m.getRow() && _COLUMN == m.getColumn());211:      Matrix<T, ROW, COLUMN> matrix;212:      for(std::size_t i = 0; i < _ROW; i++)213:          for(std::size_t j = 0; j < _COLUMN; j++)214:          {215:              matrix(i, j) = operator()(i, j) * m(i, j);216:          }217:      return matrix;218:  }219:  //矩阵转置 operator!()220:  template<typename T, std::size_t ROW, std::size_t COLUMN>221:  Matrix<T> Matrix<T, ROW, COLUMN>::operator!()222:  {223:      Matrix<T, ROW, COLUMN> matrix;224:      for(std::size_t i = 0; i < _ROW; i++)225:          for(std::size_t j = 0; j < _COLUMN; j++)226:          {227:              matrix(i, j) = (*this)(j, i);228:          }229:      return matrix;230:  }231:232:  //for cout << matrix;233:  template<typename T1>234:  std::ostream& operator<<(std::ostream& os, const Matrix<T1>& m)235:  {236:      if(m.getRow() <= 0 || m.getColumn() <= 0)237:          return os;238:      for(std::size_t i = 0; i < m.getRow(); i++)239:          for(std::size_t j = 0; j < m.getColumn(); j++)240:          {241:              os << m(i, j) << " ";242:              if(j == m.getColumn() - 1)243:                  os << std::endl;244:          }245:      return os;246:  }

1:  //重载下标操作符, m[i][j], 方法2:2:  //使用代理类. 定义两个类,当第一个类调用重载的操作符时,使此函数返回3:  //第二个类的对象,在第二个类中,同样定义了运算符 [] 重载。但在第一个4:  //类中的重载操作符要能访问第二个类的私有成员,那么就应该把第一个类声明5:  //为第二个类的友元。6:  //----7:  //每个MatrixBody对象扮演的是一个一维数组,而这个一维数组没有在使用Matrixs的8:  //程序中出现。扮演其它对象的对象通常被称为代理类。在这个例子里,MatrixBody是9:  //一个代理类。它的实例扮演的是一个在概念上不存在的一维数组。10:  //代理类的概念见: More Effective C++ Item M30:代理类11:  #pragma once12:  #include <iostream>13:  #include <cstddef>14:  #include <cassert>15:16:  template <typename T>17:  class Matrixs18:  {19:      class MatrixBody20:      {21:          friend class Matrixs<T>;22:      private:23:          T* _pData;24:          std::size_t _Rows;25:          std::size_t _Column;26:          std::size_t _CurrentRow;     //当前行27:28:          MatrixBody(std::size_t row, std::size_t column);29:30:      public:31:          T& operator[](std::size_t j);32:          const T& operator[](std::size_t j) const;33:          ~MatrixBody();34:      }mBody;35:36:  public:37:      Matrixs(std::size_t row, std::size_t column)38:          :mBody(row, column)39:      { }40:41:42:      //[] 返回第二个类的对象43:      MatrixBody& operator[](std::size_t i);44:      const MatrixBody& operator[](std::size_t i) const;45:46:      //输出矩阵内容47:      void displayMatrix() const;48:49:  };50:51:  //代理类构造函数52:  template <typename T>53:  Matrixs<T>::MatrixBody::MatrixBody(std::size_t row, std::size_t column)54:  {55:      _Rows   = row;56:      _Column = column;57:      _CurrentRow = -1;58:      _pData = new T[_Rows*_Column];59:      assert(_pData != NULL);60:      memset(_pData, 0, _Rows*_Column*sizeof(T));61:  }62:  //代理类的下标重载符63:  template <typename T>64:  T& Matrixs<T>::MatrixBody::operator[](std::size_t j)65:  {66:      bool row_error = false;67:      bool column_error = false;68:      try69:      {70:          if(_CurrentRow < 0 || _CurrentRow >= _Rows)71:              row_error = true;72:          if(j < 0 || j >= _Column)73:              column_error = true;74:          if(row_error || column_error)75:              throw 'e';76:      }77:      catch(char)78:      {79:          if(row_error)80:              cerr << "Row access invalid!" << _CurrentRow << endl;81:          if(column_error)82:              cerr << "Column access invalid!" << j << endl;83:      }84:85:      return _pData[_CurrentRow*_Column + j];86:  }87:88:  //代理类析构函数89:  template <typename T>90:  Matrixs<T>::MatrixBody::~MatrixBody()91:  {92:      if(_pData != NULL)93:          delete []_pData;94:      _pData = NULL;95:  }96:97:  //矩阵类下标重载符[] //模板的语法实在是太奇怪了,注意下面必须有 typename98:  template<typename T>99:  typename Matrixs<T>::MatrixBody& Matrixs<T>::operator[](std::size_t i)100:  {101:      mBody._CurrentRow = i;102:      return mBody;103:  }104:105:  template <typename T>106:  const typename Matrixs<T>::MatrixBody& Matrixs<T>::operator[](std::size_t i) const107:  {108:      mBody._CurrentRow = i;109:      return mBody;110:      //operator[](i);111:  }112:113:  //输出矩阵内容114:  template <typename T>115:  void Matrixs<T>::displayMatrix() const116:  {117:      std::cout << std::endl << "Now The Matrix is: " << std::endl;118:      for(std::size_t i = 0; i < mBody._Rows; i++)119:      {120:          for(std::size_t j = 0; j < mBody._Column; j++)121:          {122:              std::cout << *(mBody._pData+i*mBody._Column+j) << " ";123:124:              if(j == mBody._Column - 1)125:                  std::cout << std::endl;126:          }127:      }128:      std::cout << std::endl;129:  } 
1:  //test for Matrix class2:  #include "MatrixClass.h"3:  #include "MatrixClass1.h"4:  #include <iostream>5:6:  int main()7:  {8:9:      //指定矩阵大小10:      Matrix<int, 6, 5> matrix;11:      std::cout << "ROW = " << matrix.getRow() << " "12:              << "COLUMN = " << matrix.getColumn() << std::endl;13:      matrix.displayMatrix();14:      matrix[1][2] = 5;15:      std::cout << "matirx[1][2] = " << matrix[1][2] << std::endl;16:      matrix[5][4] = 6;17:      std::cout << "matirx[5][4] = " << matrix[5][4] << std::endl;18:      //matrix[6][4] = 3; //溢出19:      matrix.displayMatrix();20:      matrix(3, 3) = matrix[5][4];21:      matrix.displayMatrix();22:23:      //采用默认构造参数,默认大小24:      Matrix<int> matrix1;25:      matrix.displayMatrix();26:      matrix1[3][4] = 5;27:      std::cout << "ROW = " << matrix1.getRow() << " "28:              << "COLUMN = " << matrix1.getColumn() << std::endl;29:      std::cout << "matirx1[3][4] = " << matrix1[3][4] << std::endl;30:      std::cout << "matirx1[3][3] = " << matrix1[3][3] << std::endl;31:      matrix1.displayMatrix();//*/32:33:      //test for +=34:      Matrix<int> matrix2;35:      matrix2[3][4] = 2;36:      matrix2[1][4] = 3;37:      matrix2.displayMatrix();38:      std::cout << "Test for the operator+=(): ";39:      matrix2 += matrix1;     //*/40:      matrix2.displayMatrix();41:42:      //test for operator-()43:      std::cout << "Test for operator-(): ";44:      -matrix2;45:      matrix2.displayMatrix();46:47:      //test for opeartor+() and =48:      std::cout << "Test for operator+() and operator=(): ";49:      matrix1 = matrix2;50:      matrix1 = matrix1 + matrix2;51:      matrix1.displayMatrix();52:53:      //test for opeartor!()54:      std::cout << "Test for operator!(): ";55:      matrix2 = !matrix1;56:      matrix2.displayMatrix();57:58:      std::cout << "Test for cout << matrix : " << std::endl;;59:      std::cout << matrix2 << endl;60:61:      //测试代理类62:      std::cout << "Test for the proxy class: ";63:      Matrixs<int> a(5,5);64:      a.displayMatrix();65:      a[2][1] = 3;66:      a.displayMatrix();67:68:      return 0;69:  }
1:  //test for Matrix class2:  #include "MatrixClass.h"3:  #include "MatrixClass1.h"4:  #include <iostream>5:6:  int main()7:  {8:9:      //指定矩阵大小10:      Matrix<int, 6, 5> matrix;11:      std::cout << "ROW = " << matrix.getRow() << " "12:              << "COLUMN = " << matrix.getColumn() << std::endl;13:      matrix.displayMatrix();14:      matrix[1][2] = 5;15:      std::cout << "matirx[1][2] = " << matrix[1][2] << std::endl;16:      matrix[5][4] = 6;17:      std::cout << "matirx[5][4] = " << matrix[5][4] << std::endl;18:      //matrix[6][4] = 3; //溢出19:      matrix.displayMatrix();20:      matrix(3, 3) = matrix[5][4];21:      matrix.displayMatrix();22:23:      //采用默认构造参数,默认大小24:      Matrix<int> matrix1;25:      matrix.displayMatrix();26:      matrix1[3][4] = 5;27:      std::cout << "ROW = " << matrix1.getRow() << " "28:              << "COLUMN = " << matrix1.getColumn() << std::endl;29:      std::cout << "matirx1[3][4] = " << matrix1[3][4] << std::endl;30:      std::cout << "matirx1[3][3] = " << matrix1[3][3] << std::endl;31:      matrix1.displayMatrix();//*/32:33:      //test for +=34:      Matrix<int> matrix2;35:      matrix2[3][4] = 2;36:      matrix2[1][4] = 3;37:      matrix2.displayMatrix();38:      std::cout << "Test for the operator+=(): ";39:      matrix2 += matrix1;     //*/40:      matrix2.displayMatrix();41:42:      //test for operator-()43:      std::cout << "Test for operator-(): ";44:      -matrix2;45:      matrix2.displayMatrix();46:47:      //test for opeartor+() and =48:      std::cout << "Test for operator+() and operator=(): ";49:      matrix1 = matrix2;50:      matrix1 = matrix1 + matrix2;51:      matrix1.displayMatrix();52:53:      //test for opeartor!()54:      std::cout << "Test for operator!(): ";55:      matrix2 = !matrix1;56:      matrix2.displayMatrix();57:58:      std::cout << "Test for cout << matrix : " << std::endl;;59:      std::cout << matrix2 << endl;60:61:      //测试代理类62:      std::cout << "Test for the proxy class: ";63:      Matrixs<int> a(5,5);64:      a.displayMatrix();65:      a[2][1] = 3;66:      a.displayMatrix();67:68:      return 0;69:  }

    使用 C++ 实现二维数组, 主要有如下不同的方法,程序中使用的是第一种:

//不同的方法创建一个 m[3][5]
    //1):
    int* m1 = new int[3*5];
    delete []m1;
    //点:调用不够直观
    //优点:连续储存,n 可以不是已知

    //2):
    int (*m2)[5] = new int[3][5];
    delete []m2;
    //缺点:n 必须是已知
    //优点:调用直观,连续储存,程序简洁(经过测试,析构函数能正确调用)

    //3):
    int** m3 = new int*[3];
    for(int i = 0; i < 3; i++)
        m3[i] = new int[5];

    for(int i = 0; i < 3; i++)
        delete []m3[i];
    delete []m3;
    //缺点:非连续储存,程序烦琐,m3 为 A** 类型
    //优点:调用直观,n 可以不是已知

    //4):
    vector< vector<int> > m4;
    m4.resize(3);
    for(int i = 0; i < 5; i++)
        m4.resize(5);
    //缺点:非连续储存,调试不够方便,编译速度下降,程序膨胀(实际速度差别不大)
    //优点:调用直观,自动析构与释放内存,可以调用 stl 相关函数,动态增长
    
    //5):
    vector< vector<int> > m5;
    m5.resize(3*5);
    //方法 1, 4 的结合

    //6):  3) 的改进
    int** m6 = new int*[3];
    m6[0] = new int[3*5];
    for(int i = 1; i < 3; i++)
        m6[i] = m6[i-1] + 5;    
    //优点: 连续存储, n 可以不是已知, 析构方便