文章目录

  • 一、前言
  • 二、TF-IDF算法介绍
  • 三、简单实例
  • 四、TF-IDF算法的不足


一、前言

  新的问题:如果通过倒排索引查找到的网页都包含全部的查询关键字,而且,召回(符合查找条件)的网页数目又很多,这就需要将网页与查询Query的相关度进行排序了。相关度高的网页排在查询结果的前面,相关度低的网页排在后面。那问题来了,如何依据网页与查询关键词的相关性对召回的网页做排序呢?可参考:《从零开始学习自然语言处理(NLP)》-TF-IDF算法(2)

二、TF-IDF算法介绍

  TF-IDFterm frequency–inverse document frequency,词频-逆向文件频率)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术。它由两部分组成,TF 和 IDF。

  TF-IDF 是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度(另一种说法:用以评估一个字或词相对于一个文件集或一个语料库中的其他词语的重要程度)。字词的重要性随着它在文件中出现的次数的增加成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

  TF-IDF 的主要思想是:如果某个单词在一篇文章中出现的频率 TF 高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

三、简单实例

  有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才能正确做到?

  这个问题涉及到数据挖掘、文本处理、信息检索等很多计算机前沿领域,但是出乎意料的是,有一个非常简单的经典算法,可以给出令人相当满意的结果。它简单到都不需要高等数学,普通人只用10分钟就可以理解,这就是我今天想要介绍的TF-IDF算法。

  让我们从一个实例开始讲起。假定现在有一篇长文《中国的蜜蜂养殖》,我们准备用计算机提取它的关键词。

  一个容易想到的思路,就是找到出现次数最多的词。如果某个词很重要,它应该在这篇文章中多次出现。于是,我们进行"词频"(Term Frequency,缩写为TF)统计。

  结果你肯定猜到了,出现次数最多的词是----“的”、“是”、“在”----这一类最常用的词。它们叫做"停用词"(stop words),表示对找到结果毫无帮助、必须过滤掉的词。

  假设我们把它们都过滤掉了,只考虑剩下的有实际意义的词。这样又会遇到了另一个问题,我们可能发现"中国"、“蜜蜂”、"养殖"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?

  显然不是这样。因为"中国"是很常见的词,相对而言,"蜜蜂"和"养殖"不那么常见。如果这三个词在一篇文章的出现次数一样多,有理由认为,“蜜蜂"和"养殖"的重要程度要大于"中国”,也就是说,在关键词排序上面,"蜜蜂"和"养殖"应该排在"中国"的前面。

  所以,我们需要一个重要性调整系数,衡量一个词是不是常见词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。

  用统计学语言表达,就是在词频的基础上,要对每个词分配一个"重要性"权重。最常见的词(“的”、“是”、“在”)给予最小的权重,较常见的词(“中国”)给予较小的权重,较少见的词(“蜜蜂”、“养殖”)给予较大的权重。这个权重叫做"逆文档频率"(Inverse Document Frequency,缩写为IDF),它的大小与一个词的常见程度成反比。

  知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值。某个词对文章的重要性越高,它的TF-IDF值就越大。所以,排在最前面的几个词,就是这篇文章的关键词。

  下面就是这个算法的细节。第一步,计算词频。

倒排索引与聚类 倒排索引 tfidf 关系_算法


  考虑到文章有长短之分,为了便于不同文章的比较,进行 “词频” 标准化(归一化)。

倒排索引与聚类 倒排索引 tfidf 关系_权重_02

  第二步,计算逆文档频率。这时,需要一个语料库(corpus),用来模拟语言的使用环境。

倒排索引与聚类 倒排索引 tfidf 关系_权重_03


  如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log表示对得到的值取对数。  第三步,计算TF-IDF。

倒排索引与聚类 倒排索引 tfidf 关系_权重_04


  可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语料库中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。  还是以《中国的蜜蜂养殖》为例,假定该文长度为1000个词,“中国”、“蜜蜂”、“养殖"各出现20次,则这三个词的"词频”(TF)都为0.02。然后,搜索Google发现,包含"的"字的网页共有250亿张,假定这就是中文网页总数。包含"中国"的网页共有62.3亿张,包含"蜜蜂"的网页为0.484亿张,包含"养殖"的网页为0.973亿张。则它们的逆文档频率(IDF)和TF-IDF如下:

倒排索引与聚类 倒排索引 tfidf 关系_TF-IDF_05


  从上表可见,"蜜蜂"的 TF-IDF 值最高,"养殖"其次,"中国"最低。(如果还计算"的"字的 TF-IDF,那将是一个极其接近0的值。)所以,如果只选择一个词,"蜜蜂"就是这篇文章的关键词。

  除了自动提取关键词,TF-IDF 算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词(“中国”、“蜜蜂”、“养殖”)的 TF-IDF,将它们相加,就可以得到整个文档的 TF-IDF。这个值最高的文档就是与搜索词最相关的文档。

  TF-IDF 算法的优点是简单快速,结果比较符合实际情况。缺点是,单纯以"词频"衡量一个词的重要性,不够全面,有时重要的词可能出现次数并不多。而且,这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。(一种解决方法是,对全文的第一段和每一段的第一句话,给予较大的权重。)

  我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,"Google新闻"在主新闻下方,还提供多条相似的新闻。

  为了找出相似的文章,需要用到"余弦相似性"(cosine similiarity)。下面,我举一个例子来说明,什么是"余弦相似性"。为了简单起见,我们先从句子着手。

句子A:我喜欢看电视,不喜欢看电影。
  句子B:我不喜欢看电视,也不喜欢看电影。

  请问怎样才能计算上面两句话的相似程度?基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

  第一步,分词。

句子A:我/喜欢/看/电视,不/喜欢/看/电影。
  句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

  第二步,列出所有的词。

我,喜欢,看,电视,电影,不,也。

  第三步,计算词频。

句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。
  句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

  第四步,写出词频向量。

句子A:[1, 2, 2, 1, 1, 1, 0]
  句子B:[1, 2, 2, 1, 1, 2, 1]

  到这里,问题就变成了如何计算这两个向量的相似程度。

  我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, …])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

倒排索引与聚类 倒排索引 tfidf 关系_权重_06


  以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

倒排索引与聚类 倒排索引 tfidf 关系_权重_07


倒排索引与聚类 倒排索引 tfidf 关系_TF-IDF_08


  假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

倒排索引与聚类 倒排索引 tfidf 关系_词频_09


倒排索引与聚类 倒排索引 tfidf 关系_权重_10


  数学家已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, …, An] ,B是 [B1, B2, …, Bn] ,则A与B的夹角θ的余弦等于:

倒排索引与聚类 倒排索引 tfidf 关系_TF-IDF_11


  使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

倒排索引与聚类 倒排索引 tfidf 关系_TF-IDF_12


  余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。

  由此,我们就得到了"找出相似文章"的一种算法:

(1)使用TF-IDF算法,找出两篇文章的关键词;

  (2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);

  (3)生成两篇文章各自的词频向量;

  (4)计算两个向量的余弦相似度,值越大就表示越相似。

  “余弦相似度” 是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

四、TF-IDF算法的不足

  TF-IDF 采用文本逆频率 IDF 对 TF 值加权取权值大的作为关键词,但 IDF 的简单结构并不能有效地反映单词的重要程度和特征词的分布情况,使其无法很好地完成对权值调整的功能,所以 TF-IDF 算法的精度并不是很高,尤其是当文本集已经分类的情况下。

  在本质上 IDF 是一种试图抑制噪音的加权,并且单纯地认为文本频率小的单词就越重要,文本频率大的单词就越无用。这对于大部分文本信息,并不是完全正确的。IDF 的简单结构并不能使提取的关键词, 十分有效地反映单词的重要程度和特征词的分布情 况,使其无法很好地完成对权值调整的功能。尤其是在同类语料库中,这一方法有很大弊端,往往一些同类文本的关键词被盖。

TF-IDF算法实现简单快速,但是仍有许多不足之处:

  • 没有考虑特征词的位置因素对文本的区分度,词条出现在文档的不同位置时,对区分度的贡献大小是不一样的。
  • 按照传统TF-IDF,往往一些生僻词的IDF(反文档频率)会比较高、因此这些生僻词常会被误认为是文档关键词。
  • 传统TF-IDF中的IDF部分只考虑了特征词与它出现的文本数之间的关系,而忽略了特征项在一个类别中和不同的类别间的分布情况。
  • 对于文档中出现次数较少的重要人名、地名信息提取效果不佳。