LeetCode-1091. Shortest Path in Binary Matrix
原创
©著作权归作者所有:来自51CTO博客作者ReignsDu的原创作品,请联系作者获取转载授权,否则将追究法律责任
In an N by N square grid, each cell is either empty (0) or blocked (1).
A clear path from top-left to bottom-right has length k
if and only if it is composed of cells C_1, C_2, ..., C_k
such that:
- Adjacent cells
C_i
andC_{i+1}
are connected 8-directionally (ie., they are different and share an edge or corner) -
C_1
is at location(0, 0)
(ie. has valuegrid[0][0]
) -
C_k
is at location(N-1, N-1)
(ie. has valuegrid[N-1][N-1]
) - If
C_i
is located at(r, c)
, thengrid[r][c]
is empty (ie.grid[r][c] == 0
).
Return the length of the shortest such clear path from top-left to bottom-right. If such a path does not exist, return -1.
Example 1:
Input: [[0,1],[1,0]]
Output: 2
Example 2:
Input: [[0,0,0],[1,1,0],[1,1,0]]
Output: 4
Note:
-
1 <= grid.length == grid[0].length <= 100
-
grid[r][c]
is0
or1
题解:
dfs会搜索很多重复路径,使用bfs搜索最短路径。
最短路径第一时间想到bfs。
三元组效率低一些:
class Solution {
public:
int shortestPathBinaryMatrix(vector<vector<int>>& grid) {
if (grid.empty() == true) {
return -1;
}
int n = grid.size(), m = grid[0].size(), res = 10000;
if (grid[0][0] == 1 || grid[n - 1][m - 1] == 1) {
return -1;
}
queue<vector<int>> q;
q.push({0, 0, 1});
int d[8][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
while (q.empty() == false) {
vector<int> tmp = q.front();
q.pop();
if (tmp[0] == n - 1 && tmp[1] == m - 1) {
res = min(res, tmp[2]);
}
if (tmp[2] > res) {
continue;
}
for (int i = 0; i < 8; i++) {
int x = tmp[0] + d[i][0];
int y = tmp[1] + d[i][1];
if (x >= 0 && x < n && y >= 0 && y < m && grid[x][y] == 0) {
grid[x][y] = 1;
q.push({x, y, tmp[2] + 1});
}
}
}
if (res == 10000) {
return -1;
}
return res;
}
};
使用pair加ans存储高效:
class Solution {
public:
int shortestPathBinaryMatrix(vector<vector<int>>& grid) {
if (grid.empty() == true) {
return -1;
}
int n = grid.size(), m = grid[0].size();
if (grid[0][0] == 1 || grid[n - 1][m - 1] == 1) {
return -1;
}
queue<pair<int, int>> q;
q.push({0, 0});
int ans = 1;
int d[8][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
while (q.empty() == false) {
int len = q.size();
for (int i = 0; i < len; i++) {
pair<int, int> tmp = q.front();
q.pop();
if (tmp.first == n - 1 && tmp.second == m - 1) {
return ans;
}
for (int i = 0; i < 8; i++) {
int x = tmp.first + d[i][0];
int y = tmp.second + d[i][1];
if (x >= 0 && x < n && y >= 0 && y < m && grid[x][y] == 0) {
grid[x][y] = 1;
q.push({x, y});
}
}
}
ans++;
}
return -1;
}
};