1.Canny算法的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:
(1)最优检测:算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的概率和误检非边缘的概率都尽可能小;
(2)最优定位准则:检测到的边缘点的位置距离实际边缘点的位置最近,或者是由于噪声影响引起检测出的边缘偏离物体的真实边缘的程度最小;
(3)检测点与边缘点一一对应:算子检测的边缘点与实际边缘点应该是一一对应。

为了满足这些要求 Canny 使用了变分法(calculus of variations),这是一种寻找优化特定功能的函数的方法。最优检测使用四个指数函数项表示,但是它非常近似于高斯函数的一阶导数。

2.算法的实现步骤:
Canny边缘检测算法可以分为以下5个步骤:
(1)应用高斯滤波来平滑图像,目的是去除噪声
(2)找寻图像的强度梯度(intensity gradients)
(3)应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是)
(4)应用双阈值的方法来决定可能的(潜在的)边界
(5)利用滞后技术来跟踪边界

3.Matlab实现:
main.m

clear all;
close all;
clc;

img=imread('lena.jpg');
imshow(img);
[m n]=size(img);
img=double(img);

%%canny边缘检测的前两步相对不复杂,所以我就直接调用系统函数了
%%高斯滤波
w=fspecial('gaussian',[5 5]);
img=imfilter(img,w,'replicate');
figure;
imshow(uint8(img))

%%sobel边缘检测
w=fspecial('sobel');
img_w=imfilter(img,w,'replicate');      %求横边缘
w=w';
img_h=imfilter(img,w,'replicate');      %求竖边缘
img=sqrt(img_w.^2+img_h.^2);        %注意这里不是简单的求平均,而是平方和在开方。我曾经好长一段时间都搞错了
figure;
imshow(uint8(img))

%%下面是非极大抑制,以求解局部最大值
new_edge=zeros(m,n);
for i=2:m-1
    for j=2:n-1
        Mx=img_w(i,j);
        My=img_h(i,j);

        if My~=0
            o=atan(Mx/My);      %边缘的法线弧度
        elseif My==0 && Mx>0
            o=pi/2;
        else
            o=-pi/2;            
        end

        %Mx处用My和img进行插值
        adds=get_coords(o);      %边缘像素法线一侧求得的两点坐标,插值需要       
        M1=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3));   %插值后得到的像素,用此像素和当前像素比较 
        adds=get_coords(o+pi);%边缘法线另一侧求得的两点坐标,插值需要
        M2=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3));   %另一侧插值得到的像素,同样和当前像素比较

        isbigger=(Mx*img(i,j)>M1)*(Mx*img(i,j)>=M2)+(Mx*img(i,j)<M1)*(Mx*img(i,j)<=M2); %如果当前点比两边点都大置1

        if isbigger
           new_edge(i,j)=img(i,j); 
        end        
    end
end
figure;
imshow(uint8(new_edge))

%%下面是滞后阈值处理
up=120;     %上阈值
low=100;    %下阈值
set(0,'RecursionLimit',10000);  %设置最大递归深度
for i=1:m
    for j=1:n
      if new_edge(i,j)>up &&new_edge(i,j)~=255  %判断上阈值
            new_edge(i,j)=255;
            new_edge=connect(new_edge,i,j,low);
      end
    end
end
figure;
imshow(new_edge==255)

get_coords.m

function re=get_coords(angle)       %angle是边缘法线角度,返回法线前后两点
    sigma=0.000000001;
    x1=ceil(cos(angle+pi/8)*sqrt(2)-0.5-sigma);
    y1=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);
    x2=ceil(cos(angle-pi/8)*sqrt(2)-0.5-sigma);
    y2=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);
    re=[x1 y1 x2 y2];

end

connect.m

function nedge=connect(nedge,y,x,low)       %种子定位后的连通分析
    neighbour=[-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1];  %八连通搜寻
    [m n]=size(nedge);
    for k=1:8
        yy=y+neighbour(k,1);
        xx=x+neighbour(k,2);
        if yy>=1 &&yy<=m &&xx>=1 && xx<=n  
            if nedge(yy,xx)>=low && nedge(yy,xx)~=255   %判断下阈值
                nedge(yy,xx)=255;
                nedge=connect(nedge,yy,xx,low);
            end
        end        
    end 

end

效果图:

python 图像锐化 cv2 canny锐化matlab_边缘检测

参考资料:
1.http://baike.baidu.com/link?url=BkD_2Upm85hTZfLkUAFSJ0EWZ9X1nox7LETP8CpQAbRiN4oombjyPfCim2-AIlzFU966u4QrKrHA5NZj_QrInE_nPyuF-BgvCEICOaVuvR3