文章目录
- 1、Java概述
- 什么是Java
- jdk1.5之后的三大版本
- JVM、JRE和JDK的关系
- 什么是跨平台性?原理是什么?
- Java语言有哪些特点
- 什么是字节码?采用字节码的好处是什么?
- 什么是Java程序的主类?应用程序和小程序的主类有何不同?
- Java应用程序与小程序之间有那些差别?
- Java和C++的区别
- Oracle JDK 和 OpenJDK 的对比
- 2、基础语法
- 数据类型
- Java有哪些数据类型
- switch 是否能作用在 byte 上,是否能作用在 long 上,是否能作用在 String 上?
- 用最有效率的方法计算 2 乘以 8
- Math.round(11.5) 等于多少?Math.round(-11.5)等于多少
- float f=3.4;是否正确
- short s1 = 1; s1 = s1 + 1;有错吗?short s1 = 1; s1 += 1; 有错吗?
- 编码
- Java语言采用何种编码方案?有何特点?
- 注释
- 什么Java注释
- 访问修饰符
- 访问修饰符 public,private,protected,以及不写(默认)时的区别
- 运算符
- &和&&的区别
- 关键字
- Java 有没有 goto
- final 有什么用?
- final finally finalize区别
- this关键字的用法
- super关键字的用法
- this与super的区别
- static存在的主要意义
- static的独特之处
- static应用场景
- static注意事项
- 流程控制语句
- break,continue,return 的区别及作用
- 在 Java 中,如何跳出当前的多重嵌套循环
- 3、面向对象
- 面向对象概述
- 面向对象和面向过程的区别
- 面向对象三大特性
- 什么是多态机制?Java语言是如何实现多态的?
- 面向对象五大基本原则是什么(可选)
- 类与接口
- 抽象类和接口的对比
- 普通类和抽象类有哪些区别?
- 抽象类能使用 final 修饰吗?
- 创建一个对象用什么关键字?对象实例与对象引用有何不同?
- 变量与方法
- 成员变量与局部变量的区别有哪些
- 在Java中定义一个不做事且没有参数的构造方法的作用
- 在调用子类构造方法之前会先调用父类没有参数的构造方法,其目的是?
- 一个类的构造方法的作用是什么?若一个类没有声明构造方法,改程序能正确执行吗?为什么?
- 构造方法有哪些特性?
- 静态变量和实例变量区别
- 静态变量与普通变量区别
- 静态方法和实例方法有何不同?
- 在一个静态方法内调用一个非静态成员为什么是非法的?
- 什么是方法的返回值?返回值的作用是什么?
- 内部类
- 什么是内部类?
- 内部类的分类有哪些
- 静态内部类
- 成员内部类
- 局部内部类
- 匿名内部类
- 内部类的优点
- 内部类有哪些应用场景
- 局部内部类和匿名内部类访问局部变量的时候,为什么变量必须要加上final?
- 重写与重载
- 构造器(constructor)是否可被重写(override)
- 重载(Overload)和重写(Override)的区别。重载的方法能否根据返回类型进行区分?
- 对象相等判断
- == 和 equals 的区别是什么
- hashCode 与 equals (重要)
- 对象的相等与指向他们的引用相等,两者有什么不同?
- 值传递
- 为什么 Java 中只有值传递?
- 值传递和引用传递有什么区别
- Java包
- JDK 中常用的包有哪些
- import java和javax有什么区别
- 4、集合
- 集合概述
- 常见的集合有哪些?
- 线程安全的集合有哪些?线程不安全的呢?
- ArrayList
- Arraylist与LinkedList异同点?
- ArrayList与Vector区别?
- 说一说ArrayList的扩容机制?
- Array和ArrayList的区别?
- HashMap
- HashMap的底层数据结构是什么?
- 解决hash冲突的办法有哪些? HashMap用的哪种?
- 为什么在解决hash冲突的时候,不直接用红黑树? 而选择先用链表,再转红黑树?
- HashMap默认加载因子是多少?为什么是0.75,不是0.6或者0.8?
- HashMap 中Key的存储索引是怎么计算的?
- HashMap 的put 的方流程?
- HashMap 的扩容方式?
- 一般用什么作为HashMap的key?
- HashMap为什么线程不安全?
- CurrentHashMap
- ConcurrentHashMap的实现原理是什么
- ConcurrentHashMap的put 方法执行逻辑是什么?
- ConcurrentHashMap 的get方法是否要加锁,为什么?
- get方法不需要加锁与volatile修饰的哈希桶有关吗?
- JDK1.7和JDK1.8中ConcurrentHashMap的区别?
- HashTable
- 说一下HashTale的锁机制?
- ConcurrentHashMap和HashTable的效率那个更高?为什么?
- 5、IO流
- java 中 IO 流分为几种?
- BIO,NIO,AIO 有什么区别?
- Files的常用方法都有哪些?
- 6、反射
- 什么是反射机制?
- 静态编译和动态编译
- 反射机制优缺点
- 反射机制的应用场景有哪些?
- Java获取反射的三种方法
- 7、网络编程
- 8、常用API
- String相关
- 字符型常量和字符串常量的区别
- 什么是字符串常量池?
- String 是最基本的数据类型吗
- String有哪些特性
- String为什么是不可变的吗?
- String真的是不可变的吗?
- 是否可以继承 String 类
- String str="i"与 String str=new String(“i”)一样吗?
- String s = new String(“xyz”);创建了几个字符串对象
- 如何将字符串反转?
- 数组有没有 length()方法?String 有没有 length()方法
- String 类的常用方法都有那些?
- 在使用 HashMap 的时候,用 String 做 key 有什么好处?
- String和StringBuffer、StringBuilder的区别是什么?String为什么是不可变的
- 包装类相关
- 自动装箱与拆箱
- int 和 Integer 有什么区别
- Integer a= 127 与 Integer b = 127相等吗
1、Java概述
什么是Java
Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程 。
jdk1.5之后的三大版本
- Java SE(J2SE,Java 2 Platform Standard Edition,标准版)
Java SE 以前称为 J2SE。它允许开发和部署在桌面、服务器、嵌入式环境和实时环境中使用的 Java 应用程序。Java SE 包含了支持 Java Web 服务开发的类,并为Java EE和Java ME提供基础。 - Java EE(J2EE,Java 2 Platform Enterprise Edition,企业版)
Java EE 以前称为 J2EE。企业版本帮助开发和部署可移植、健壮、可伸缩且安全的服务器端Java 应用程序。Java EE 是在 Java SE 的基础上构建的,它提供 Web 服务、组件模型、管理和通信 API,可以用来实现企业级的面向服务体系结构(service-oriented architecture,SOA)和 Web2.0应用程序。2018年2月,Eclipse 宣布正式将 JavaEE 更名为 JakartaEE - Java ME(J2ME,Java 2 Platform Micro Edition,微型版)
Java ME 以前称为 J2ME。Java ME 为在移动设备和嵌入式设备(比如手机、PDA、电视机顶盒和打印机)上运行的应用程序提供一个健壮且灵活的环境。Java ME 包括灵活的用户界面、健壮的安全模型、许多内置的网络协议以及对可以动态下载的连网和离线应用程序的丰富支持。基于 Java ME 规范的应用程序只需编写一次,就可以用于许多设备,而且可以利用每个设备的本机功能。
JVM、JRE和JDK的关系
- JVM
Java Virtual Machine是Java虚拟机,Java程序需要运行在虚拟机上,不同的平台有自己的虚拟机,因此Java语言可以实现跨平台。 - JRE
Java Runtime Environment包括Java虚拟机和Java程序所需的核心类库等。核心类库主要是java.lang包:包含了运行Java程序必不可少的系统类,如基本数据类型、基本数学函数、字符串处理、线程、异常处理类等,系统缺省加载这个包。
如果想要运行一个开发好的Java程序,计算机中只需要安装JRE即可。 - JDK
Java Development Kit是提供给Java开发人员使用的,其中包含了Java的开发工具,也包括了JRE。所以安装了JDK,就无需再单独安装JRE了。其中的开发工具:编译工具(javac.exe),打包工具(jar.exe)等
JVM&JRE&JDK关系图
什么是跨平台性?原理是什么?
所谓跨平台性,是指java语言编写的程序,一次编译后,可以在多个系统平台上运行。
实现原理:Java程序是通过Java虚拟机在系统平台上运行的,只要该系统可以安装相应的Java虚拟机,该系统就可以运行Java程序。
Java语言有哪些特点
- 简单易学(Java语言的语法与C语言和C++语言很接近)
- 面向对象(封装,继承,多态)
- 平台无关性(Java虚拟机实现平台无关性)
- 支持网络编程并且很方便(Java语言诞生本身就是为简化网络编程设计的)
- 支持多线程(多线程机制使应用程序在同一时间并行执行多项任)
- 健壮性(Java语言的强类型机制、异常处理、垃圾的自动收集等)
- 安全性
什么是字节码?采用字节码的好处是什么?
字节码:Java源代码经过虚拟机编译器编译后产生的文件(即扩展为.class的文件),它不面向任何特定的处理器,只面向虚拟机。
采用字节码的好处:
Java语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。所以Java程序运行时比较高效,而且,由于字节码并不专对一种特定的机器,因此,Java程序无须重新编译便可在多种不同的计算机上运行。
先看下Java中的编译器和解释器:
Java中引入了虚拟机的概念,即在机器和编译程序之间加入了一层抽象的虚拟机器。这台虚拟的机器在任何平台上都提供给编译程序一个的共同的接口。编译程序只需要面向虚拟机,生成虚拟机能够理解的代码,然后由解释器来将虚拟机代码转换为特定系统的机器码执行。在Java中,这种供虚拟机理解的代码叫做字节码(即扩展为.class的文件),它不面向任何特定的处理器,只面向虚拟机。每一种平台的解释器是不同的,但是实现的虚拟机是相同的。Java源程序经过编译器编译后变成字节码,字节码由虚拟机解释执行,虚拟机将每一条要执行的字节码送给解释器,解释器将其翻译成特定机器上的机器码,然后在特定的机器上运行,这就是上面提到的Java的特点的编译与解释并存的解释。
Java源代码---->编译器---->jvm可执行的Java字节码(即虚拟指令)---->jvm---->jvm中解释器----->机器可执行的二进制机器码---->程序运行
什么是Java程序的主类?应用程序和小程序的主类有何不同?
一个程序中可以有多个类,但只能有一个类是主类。在Java应用程序中,这个主类是指包含main()方法的类。而在Java小程序中,这个主类是一个继承自系统类JApplet或Applet的子类。应用程序的主类不一定要求是public类,但小程序的主类要求必须是public类。主类是Java程序执行的入口点。
Java应用程序与小程序之间有那些差别?
简单说应用程序是从主线程启动(也就是main()方法)。applet小程序没有main方法,主要是嵌在浏览器页面上运行(调用init()线程或者run()来启动),嵌入浏览器这点跟flash的小游戏类似。
Java和C++的区别
我知道很多人没学过C++,但是面试官就是没事喜欢拿咱们Java和C++比呀!没办法!!!就算没学过C++,也要记下来!
- 都是面向对象的语言,都支持封装、继承和多态
- Java不提供指针来直接访问内存,程序内存更加安全
- Java的类是单继承的,C++支持多重继承;虽然Java的类不可以多继承,但是接口可以多继承。
- Java有自动内存管理机制,不需要程序员手动释放无用内存
Oracle JDK 和 OpenJDK 的对比
- Oracle JDK版本将每三年发布一次,而OpenJDK版本每三个月发布一次;
- OpenJDK 是一个参考模型并且是完全开源的,而Oracle JDK是OpenJDK的一个实现,并不是完全开源的;
- Oracle JDK 比 OpenJDK 更稳定。OpenJDK和Oracle JDK的代码几乎相同,但Oracle JDK有更多的类和一些错误修复。因此,如果您想开发企业/商业软件,我建议您选择Oracle JDK,因为它经过了彻底的测试和稳定。某些情况下,有些人提到在使用OpenJDK 可能会遇到了许多应用程序崩溃的问题,但是,只需切换到Oracle JDK就可以解决问题;
- 在响应性和JVM性能方面,Oracle JDK与OpenJDK相比提供了更好的性能;
- Oracle JDK不会为即将发布的版本提供长期支持,用户每次都必须通过更新到最新版本获得支持来获取最新版本;
- Oracle JDK根据二进制代码许可协议获得许可,而OpenJDK根据GPL v2许可获得许可。
2、基础语法
数据类型
Java有哪些数据类型
定义:Java语言是强类型语言,对于每一种数据都定义了明确的具体的数据类型,在内存中分配了不同大小的内存空间。
分类
- 基本数据类型
- 数值型
- 整数类型(byte,short,int,long)
- 浮点类型(float,double)
- 字符型(char)
- 布尔型(boolean)
- 引用数据类型
- 类(class)
- 接口(interface)
- 数组([])
Java基本数据类型图
switch 是否能作用在 byte 上,是否能作用在 long 上,是否能作用在 String 上?
在 Java 5 以前,switch(expr)中,expr 只能是 byte、short、char、int。从 Java5 开始,Java 中引入了枚举类型,expr 也可以是 enum 类型,从 Java 7 开始,expr 还可以是字符串(String),但是长整型(long)在目前所有的版本中都是不可以的。
用最有效率的方法计算 2 乘以 8
2 << 3(左移 3 位相当于乘以 2 的 3 次方,右移 3 位相当于除以 2 的 3 次方)。
Math.round(11.5) 等于多少?Math.round(-11.5)等于多少
Math.round(11.5)的返回值是 12,Math.round(-11.5)的返回值是-11。四舍五入的原理是在参数上加 0.5 然后进行下取整。
float f=3.4;是否正确
不正确。3.4 是双精度数,将双精度型(double)赋值给浮点型(float)属于下转型(down-casting,也称为窄化)会造成精度损失,因此需要强制类型转换float f =(float)3.4; 或者写成 float f =3.4F;。
short s1 = 1; s1 = s1 + 1;有错吗?short s1 = 1; s1 += 1; 有错吗?
对于 short s1 = 1; s1 = s1 + 1;由于 1 是 int 类型,因此 s1+1 运算结果也是 int型,需要强制转换类型才能赋值给 short 型。
而 short s1 = 1; s1 += 1;可以正确编译,因为 s1+= 1;相当于 s1 = (short(s1 + 1);其中有隐含的强制类型转换。
编码
Java语言采用何种编码方案?有何特点?
Java语言采用Unicode编码标准,Unicode(标准码),它为每个字符制订了一个唯一的数值,因此在任何的语言,平台,程序都可以放心的使用。
注释
什么Java注释
定义:用于解释说明程序的文字
分类
- 单行注释
格式: // 注释文字 - 多行注释
格式: /* 注释文字 */ - 文档注释
格式:/** 注释文字 */
作用
在程序中,尤其是复杂的程序中,适当地加入注释可以增加程序的可读性,有利于程序的修改、调试和交流。注释的内容在程序编译的时候会被忽视,不会产生目标代码,注释的部分不会对程序的执行结果产生任何影响。
注意事项:多行和文档注释都不能嵌套使用。
访问修饰符
访问修饰符 public,private,protected,以及不写(默认)时的区别
定义:Java中,可以使用访问修饰符来保护对类、变量、方法和构造方法的访问。Java 支持 4 种不同的访问权限。
分类
private : 在同一类内可见。使用对象:变量、方法。 注意:不能修饰类(外部类)
default (即缺省,什么也不写,不使用任何关键字): 在同一包内可见,不使用任何修饰符。使用对象:类、接口、变量、方法。
protected : 对同一包内的类和所有子类可见。使用对象:变量、方法。 注意:不能修饰类(外部类)。
public : 对所有类可见。使用对象:类、接口、变量、方法
访问修饰符图
运算符
&和&&的区别
&运算符有两种用法:(1)按位与(2)逻辑与。
&&运算符是短路与运算符。逻辑与跟短路与的差别是非常巨大的,虽然二者都要求运算符左右两端的布尔值都是true,整个表达式的值才是 true。&&之所以称为短路运算符,是因为如果&&左边的表达式的值是 false,右边的表达式会被直接短路掉,不会进行运算。
运算符 | 符号 | 说明 |
逻辑与 | &(与) | 两个操作数位true,结果才是true,否则是false |
逻辑或 |
| 两个操作数有一个true,结果就是true |
短路与 | &&(与) | 只要有一个为false,则直接返回false |
短路或 |
| 只要有一个为true,则直接返回true |
逻辑非 | !(非) | 取反:!false为true,!true为false |
逻辑异或 | ^(异或) | 相同为false,不同为true |
关键字
Java 有没有 goto
goto 是 Java 中的保留字,在目前版本的 Java 中没有使用。
final 有什么用?
用于修饰类、属性和方法;
- 被final修饰的类不可以被继承
- 被final修饰的方法不可以被重写
- 被final修饰的变量不可以被改变,被final修饰不可变的是变量的引用,而不是引用指向的内容,引用指向的内容是可以改变的
final finally finalize区别
- final可以修饰类、变量、方法,修饰类表示该类不能被继承、修饰方法表示该方法不能被重写、修饰变量表示该变量是一个常量不能被重新赋值。
- finally一般作用在try-catch代码块中,在处理异常的时候,通常我们将一定要执行的代码方法finally代码块中,表示不管是否出现异常,该代码块都会执行,一般用来存放一些关闭资源的代码。
- finalize是一个方法,属于Object类的一个方法,而Object类是所有类的父类,该方法一般由垃圾回收器来调用,当我们调用System.gc() 方法的时候,由垃圾回收器调用finalize(),回收垃圾,一个对象是否可回收的最后判断。
this关键字的用法
this是自身的一个对象,代表对象本身,可以理解为:指向对象本身的一个指针。
this的用法在java中大体可以分为3种:
- 普通的直接引用,this相当于是指向当前对象本身。
- 形参与成员名字重名,用this来区分:
public Person(String name, int age) {
this.name = name;
this.age = age;
}
- 引用本类的构造函数
class Person{
private String name;
private int age;
public Person() {
}
public Person(String name) {
this.name = name;
}
public Person(String name, int age) {
this(name);
this.age = age;
}
}
super关键字的用法
super可以理解为是指向自己超(父)类对象的一个指针,而这个超类指的是离自己最近的一个父类。
super也有三种用法:
- 普通的直接引用
与this类似,super相当于是指向当前对象的父类的引用,这样就可以用super.xxx来引用父类的成员。 - 子类中的成员变量或方法与父类中的成员变量或方法同名时,用super进行区分
class Person{
protected String name;
public Person(String name) {
this.name = name;
}
}
class Student extends Person{
private String name;
public Student(String name, String name1) {
super(name);
this.name = name1;
}
public void getInfo(){
System.out.println(this.name); //Child
System.out.println(super.name); //Father
}
}
public class Test {
public static void main(String[] args) {
Student s1 = new Student("Father","Child");
s1.getInfo();
}
}
- 引用父类构造函数
- super(参数):调用父类中的某一个构造函数(应该为构造函数中的第一条语句)。
- this(参数):调用本类中另一种形式的构造函数(应该为构造函数中的第一条语句)。
this与super的区别
- super: 它引用当前对象的直接父类中的成员(用来访问直接父类中被隐藏的父类中成员数据或函数,基类与派生类中有相同成员定义时如:super.变量名,super.成员函数据名(实参))
- this:它代表当前对象名(在程序中易产生二义性之处,应使用this来指明当前对象;如果函数的形参与类中的成员数据同名,这时需用this来指明成员变量名)
- super()和this()类似,区别是:super()在子类中调用父类的构造方法,this()在本类内调用本类的其它构造方法。
- super()和this()均需放在构造方法内第一行。
- 尽管可以用this调用一个构造器,但却不能调用两个。
- this和super不能同时出现在一个构造函数里面,因为this必然会调用其它的构造函数,其它的构造函数必然也会有super语句的存在,所以在同一个构造函数里面有相同的语句,就失去了语句的意义,编译器也不会通过。
- this()和super()都指的是对象,所以均不可以在static环境中使用。包括:static变量,static方法,static语句块。
- 从本质上讲,this是一个指向本对象的指针,然而super是一个Java关键字。
static存在的主要意义
static的主要意义是在于创建独立于具体对象的域变量或者方法。以致于即使没有创建对象,也能使用属性和调用方法!
static关键字还有一个比较关键的作用就是 用来形成静态代码块以优化程序性能。static块可以置于类中的任何地方,类中可以有多个static块。在类初次被加载的时候,会按照static块的顺序来执行每个static块,并且只会执行一次
。
为什么说static块可以用来优化程序性能,是因为它的特性:只会在类加载的时候执行一次。因此,很多时候会将一些只需要进行一次的初始化操作都放在static代码块中进行
。
static的独特之处
1、被static修饰的变量或者方法是独立于该类的任何对象,也就是说,这些变量和方法不属于任何一个实例对象,而是被类的实例对象所共享
。
怎么理解 “被类的实例对象所共享” 这句话呢?就是说,一个类的静态成员,它是属于大伙的【大伙指的是这个类的多个对象实例,我们都知道一个类可以创建多个实例!】,所有的类对象共享的,不像成员变量是自个的【自个指的是这个类的单个实例对象】我觉得我已经讲的很通俗了,你明白了吗?
2、在该类被第一次加载的时候,就会去加载被static修饰的部分,而且只在类第一次使用时加载并进行初始化,注意这是第一次用就要初始化,后面根据需要是可以再次赋值的。
3、static变量值在类加载的时候分配空间,以后创建类对象的时候不会重新分配。赋值的话,是可以任意赋值的!
4、被static修饰的变量或者方法是优先于对象存在的,也就是说当一个类加载完毕之后,即便没有创建对象,也可以去访问。
static应用场景
因为static是被类的实例对象所共享,因此如果某个成员变量是被所有对象所共享的,那么这个成员变量就应该定义为静态变量。
因此比较常见的static应用场景有:
1、修饰成员变量 2、修饰成员方法 3、静态代码块 4、修饰类【只能修饰内部类也就是静态内部类】 5、静态导包
static注意事项
1、静态只能访问静态。 2、非静态既可以访问非静态的,也可以访问静态的。
流程控制语句
break,continue,return 的区别及作用
- break 跳出总上一层循环,不再执行循环(结束当前的循环体)
- continue 跳出本次循环,继续执行下次循环(结束正在执行的循环 进入下一个循环条件)
- return 程序返回,不再执行下面的代码(结束当前的方法 直接返回)
在 Java 中,如何跳出当前的多重嵌套循环
在Java中,要想跳出多重循环,可以在外面的循环语句前定义一个标号,然后在里层循环体的代码中使用带有标号的break 语句,即可跳出外层循环。例如:
public static void main(String[] args) {
ok:
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
System.out.println("i=" + i + ",j=" + j);
if (j == 5) {
break ok;
}
}
}
}
3、面向对象
面向对象概述
面向对象和面向过程的区别
面向过程:
- 优点:性能比面向对象高,因为类调用时需要实例化,开销比较大,比较消耗资源;比如单片机、嵌入式开发、Linux/Unix等一般采用面向过程开发,性能是最重要的因素。
- 缺点:没有面向对象易维护、易复用、易扩展。
面向对象:
- 优点:易维护、易复用、易扩展,由于面向对象有封装、继承、多态性的特性,可以设计出低耦合的系统,使系统更加灵活、更加易于维护。
- 缺点:性能比面向过程低。
面向过程是具体化的,流程化的,解决一个问题,你需要一步一步的分析,一步一步的实现。
面向对象是模型化的,你只需抽象出一个类,这是一个封闭的盒子,在这里你拥有数据也拥有解决问题的方法。需要什么功能直接使用就可以了,不必去一步一步的实现,至于这个功能是如何实现的,管我们什么事?我们会用就可以了。
面向对象的底层其实还是面向过程,把面向过程抽象成类,然后封装,方便我们使用的就是面向对象了。
面向对象三大特性
面向对象的特征主要有以下几个方面:
抽象:抽象是将一类对象的共同特征总结出来构造类的过程,包括数据抽象和行为抽象两方面。抽象只关注对象有哪些属性和行为,并不关注这些行为的细节是什么。
封装:封装把一个对象的属性私有化,同时提供一些可以被外界访问的属性的方法,如果属性不想被外界访问,我们大可不必提供方法给外界访问。但是如果一个类没有提供给外界访问的方法,那么这个类也没有什么意义了。
继承:继承是使用已存在的类的定义作为基础建立新类的技术,新类的定义可以增加新的数据或新的功能,也可以用父类的功能,但不能选择性地继承父类。通过使用继承我们能够非常方便地复用以前的代码。
关于继承如下 3 点请记住:
- 子类拥有父类非 private 的属性和方法。
- 子类可以拥有自己属性和方法,即子类可以对父类进行扩展。
- 子类可以用自己的方式实现父类的方法。
多态:所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量到底会指向哪个类的实例对象,该引用变量发出的方法调用到底是哪个类中实现的方法,必须在由程序运行期间才能决定。
在Java中有两种形式可以实现多态:继承(多个子类对同一方法的重写)和接口(实现接口并覆盖接口中同一方法)。
其中Java 面向对象编程三大特性:封装 继承 多态
封装:隐藏对象的属性和实现细节,仅对外提供公共访问方式,将变化隔离,便于使用,提高复用性和安全性。
继承:继承是使用已存在的类的定义作为基础建立新类的技术,新类的定义可以增加新的数据或新的功能,也可以用父类的功能,但不能选择性地继承父类。通过使用继承可以提高代码复用性。继承是多态的前提。
关于继承如下 3 点请记住:
- 子类拥有父类非 private 的属性和方法。
- 子类可以拥有自己属性和方法,即子类可以对父类进行扩展。
- 子类可以用自己的方式实现父类的方法。
多态性:父类或接口定义的引用变量可以指向子类或具体实现类的实例对象。提高了程序的拓展性。
在Java中有两种形式可以实现多态:继承(多个子类对同一方法的重写)和接口(实现接口并覆盖接口中同一方法)。
方法重载(overload)实现的是编译时的多态性(也称为前绑定),而方法重写(override)实现的是运行时的多态性(也称为后绑定)。
一个引用变量到底会指向哪个类的实例对象,该引用变量发出的方法调用到底是哪个类中实现的方法,必须在由程序运行期间才能决定。运行时的多态是面向对象最精髓的东西,要实现多态需要做两件事:
- 方法重写(子类继承父类并重写父类中已有的或抽象的方法);
- 对象造型(用父类型引用子类型对象,这样同样的引用调用同样的方法就会根据子类对象的不同而表现出不同的行为)。
什么是多态机制?Java语言是如何实现多态的?
所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定,即一个引用变量倒底会指向哪个类的实例对象,该引用变量发出的方法调用到底是哪个类中实现的方法,必须在由程序运行期间才能决定。因为在程序运行时才确定具体的类,这样,不用修改源程序代码,就可以让引用变量绑定到各种不同的类实现上,从而导致该引用调用的具体方法随之改变,即不修改程序代码就可以改变程序运行时所绑定的具体代码,让程序可以选择多个运行状态,这就是多态性。
多态分为编译时多态和运行时多态。其中编辑时多态是静态的,主要是指方法的重载,它是根据参数列表的不同来区分不同的函数,通过编辑之后会变成两个不同的函数,在运行时谈不上多态。而运行时多态是动态的,它是通过动态绑定来实现的,也就是我们所说的多态性。
多态的实现
Java实现多态有三个必要条件:继承、重写、向上转型。
- 继承:在多态中必须存在有继承关系的子类和父类。
- 重写:子类对父类中某些方法进行重新定义,在调用这些方法时就会调用子类的方法。
- 向上转型:在多态中需要将子类的引用赋给父类对象,只有这样该引用才能够具备技能调用父类的方法和子类的方法。
只有满足了上述三个条件,我们才能够在同一个继承结构中使用统一的逻辑实现代码处理不同的对象,从而达到执行不同的行为。
对于Java而言,它多态的实现机制遵循一个原则:当超类对象引用变量引用子类对象时,被引用对象的类型而不是引用变量的类型决定了调用谁的成员方法,但是这个被调用的方法必须是在超类中定义过的,也就是说被子类覆盖的方法。
面向对象五大基本原则是什么(可选)
- 单一职责原则SRP(Single Responsibility Principle)
类的功能要单一,不能包罗万象,跟杂货铺似的。 - 开放封闭原则OCP(Open-Close Principle)
一个模块对于拓展是开放的,对于修改是封闭的,想要增加功能热烈欢迎,想要修改,哼,一万个不乐意。 - 里式替换原则LSP(the Liskov Substitution Principle LSP)
子类可以替换父类出现在父类能够出现的任何地方。比如你能代表你爸去你姥姥家干活。哈哈~~ - 依赖倒置原则DIP(the Dependency Inversion Principle DIP)
高层次的模块不应该依赖于低层次的模块,他们都应该依赖于抽象。抽象不应该依赖于具体实现,具体实现应该依赖于抽象。就是你出国要说你是中国人,而不能说你是哪个村子的。比如说中国人是抽象的,下面有具体的xx省,xx市,xx县。你要依赖的抽象是中国人,而不是你是xx村的。 - 接口分离原则ISP(the Interface Segregation Principle ISP)
设计时采用多个与特定客户类有关的接口比采用一个通用的接口要好。就比如一个手机拥有打电话,看视频,玩游戏等功能,把这几个功能拆分成不同的接口,比在一个接口里要好的多。
类与接口
抽象类和接口的对比
抽象类是用来捕捉子类的通用特性的。接口是抽象方法的集合。
从设计层面来说,抽象类是对类的抽象,是一种模板设计,接口是行为的抽象,是一种行为的规范。
相同点
- 接口和抽象类都不能实例化
- 都位于继承的顶端,用于被其他实现或继承
- 都包含抽象方法,其子类都必须覆写这些抽象方法
不同点
参数 | 抽象类 | 接口 |
声明 | 抽象类使用abstract关键字声明 | 接口使用interface关键字声明 |
实现 | 子类使用extends关键字来继承抽象类。如果子类不是抽象类的话,它需要提供抽象类中所有声明的方法的实现 | 子类使用implements关键字来实现接口。它需要提供接口中所有声明的方法的实现 |
构造器 | 抽象类可以有构造器 | 接口不能有构造器 |
访问修饰符 | 抽象类中的方法可以是任意访问修饰符 | 接口方法默认修饰符是public。并且不允许定义为 private 或者 protected |
多继承 | 一个类最多只能继承一个抽象类 | 一个类可以实现多个接口 |
字段声明 | 抽象类的字段声明可以是任意的 | 接口的字段默认都是 static 和 final 的 |
备注:Java8中接口中引入默认方法和静态方法,以此来减少抽象类和接口之间的差异。
现在,我们可以为接口提供默认实现的方法了,并且不用强制子类来实现它。
接口和抽象类各有优缺点,在接口和抽象类的选择上,必须遵守这样一个原则:
- 行为模型应该总是通过接口而不是抽象类定义,所以通常是优先选用接口,尽量少用抽象类。
- 选择抽象类的时候通常是如下情况:需要定义子类的行为,又要为子类提供通用的功能。
普通类和抽象类有哪些区别?
- 普通类不能包含抽象方法,抽象类可以包含抽象方法。
- 抽象类不能直接实例化,普通类可以直接实例化。
抽象类能使用 final 修饰吗?
不能,定义抽象类就是让其他类继承的,如果定义为 final 该类就不能被继承,这样彼此就会产生矛盾,所以 final 不能修饰抽象类
创建一个对象用什么关键字?对象实例与对象引用有何不同?
new关键字,new创建对象实例(对象实例在堆内存中),对象引用指向对象实例(对象引用存放在栈内存中)。一个对象引用可以指向0个或1个对象(一根绳子可以不系气球,也可以系一个气球);一个对象可以有n个引用指向它(可以用n条绳子系住一个气球)
变量与方法
成员变量与局部变量的区别有哪些
- 变量:在程序执行的过程中,在某个范围内其值可以发生改变的量。从本质上讲,变量其实是内存中的一小块区域
- 成员变量:方法外部,类内部定义的变量
- 局部变量:类的方法中的变量。
成员变量和局部变量的区别:
作用域
成员变量:针对整个类有效。
局部变量:只在某个范围内有效。(一般指的就是方法,语句体内)
存储位置
成员变量:随着对象的创建而存在,随着对象的消失而消失,存储在堆内存中。
局部变量:在方法被调用,或者语句被执行的时候存在,存储在栈内存中。当方法调用完,或者语句结束后,就自动释放。
生命周期
成员变量:随着对象的创建而存在,随着对象的消失而消失
局部变量:当方法调用完,或者语句结束后,就自动释放。
初始值
成员变量:有默认初始值。
局部变量:没有默认初始值,使用前必须赋值。
使用原则
在使用变量时需要遵循的原则为:就近原则
首先在局部范围找,有就使用;接着在成员位置找。
在Java中定义一个不做事且没有参数的构造方法的作用
Java程序在执行子类的构造方法之前,如果没有用super()来调用父类特定的构造方法,则会调用父类中“没有参数的构造方法”。因此,如果父类中只定义了有参数的构造方法,而在子类的构造方法中又没有用super()来调用父类中特定的构造方法,则编译时将发生错误,因为Java程序在父类中找不到没有参数的构造方法可供执行。解决办法是在父类里加上一个不做事且没有参数的构造方法。
在调用子类构造方法之前会先调用父类没有参数的构造方法,其目的是?
帮助子类做初始化工作。
一个类的构造方法的作用是什么?若一个类没有声明构造方法,改程序能正确执行吗?为什么?
主要作用是完成对类对象的初始化工作。可以执行。因为一个类即使没有声明构造方法也会有默认的不带参数的构造方法。
构造方法有哪些特性?
名字与类名相同;
没有返回值,但不能用void声明构造函数;
生成类的对象时自动执行,无需调用。
静态变量和实例变量区别
静态变量: 静态变量由于不属于任何实例对象,属于类的,所以在内存中只会有一份,在类的加载过程中,JVM只为静态变量分配一次内存空间。
实例变量: 每次创建对象,都会为每个对象分配成员变量内存空间,实例变量是属于实例对象的,在内存中,创建几次对象,就有几份成员变量。
静态变量与普通变量区别
static变量也称作静态变量,静态变量和非静态变量的区别是:静态变量被所有的对象所共享,在内存中只有一个副本,它当且仅当在类初次加载时会被初始化。而非静态变量是对象所拥有的,在创建对象的时候被初始化,存在多个副本,各个对象拥有的副本互不影响。
还有一点就是static成员变量的初始化顺序按照定义的顺序进行初始化。
静态方法和实例方法有何不同?
静态方法和实例方法的区别主要体现在两个方面:
- 在外部调用静态方法时,可以使用"类名.方法名"的方式,也可以使用"对象名.方法名"的方式。而实例方法只有后面这种方式。也就是说,调用静态方法可以无需创建对象。
- 静态方法在访问本类的成员时,只允许访问静态成员(即静态成员变量和静态方法),而不允许访问实例成员变量和实例方法;实例方法则无此限制
在一个静态方法内调用一个非静态成员为什么是非法的?
由于静态方法可以不通过对象进行调用,因此在静态方法里,不能调用其他非静态变量,也不可以访问非静态变量成员。
什么是方法的返回值?返回值的作用是什么?
方法的返回值是指我们获取到的某个方法体中的代码执行后产生的结果!(前提是该方法可能产生结果)。返回值的作用:接收出结果,使得它可以用于其他的操作!
内部类
什么是内部类?
在Java中,可以将一个类的定义放在另外一个类的定义内部,这就是内部类。内部类本身就是类的一个属性,与其他属性定义方式一致。
内部类的分类有哪些
内部类可以分为四种:成员内部类、局部内部类、匿名内部类和静态内部类。
静态内部类
定义在类内部的静态类,就是静态内部类。
public class Outer {
private static int radius = 1;
static class StaticInner {
public void visit() {
System.out.println("visit outer static variable:" + radius);
}
}
}
静态内部类可以访问外部类所有的静态变量,而不可访问外部类的非静态变量;静态内部类的创建方式,new 外部类.静态内部类(),如下:
Outer.StaticInner inner = new Outer.StaticInner();
inner.visit();
成员内部类
定义在类内部,成员位置上的非静态类,就是成员内部类。
public class Outer {
private static int radius = 1;
private int count =2;
class Inner {
public void visit() {
System.out.println("visit outer static variable:" + radius);
System.out.println("visit outer variable:" + count);
}
}
}
成员内部类可以访问外部类所有的变量和方法,包括静态和非静态,私有和公有。成员内部类依赖于外部类的实例,它的创建方式外部类实例.new 内部类()
,如下:
Outer outer = new Outer();
Outer.Inner inner = outer.new Inner();
inner.visit();
局部内部类
定义在方法中的内部类,就是局部内部类。
public class Outer {
private int out_a = 1;
private static int STATIC_b = 2;
public void testFunctionClass(){
int inner_c =3;
class Inner {
private void fun(){
System.out.println(out_a);
System.out.println(STATIC_b);
System.out.println(inner_c);
}
}
Inner inner = new Inner();
inner.fun();
}
public static void testStaticFunctionClass(){
int d =3;
class Inner {
private void fun(){
// System.out.println(out_a); 编译错误,定义在静态方法中的局部类不可以访问外部类的实例变量
System.out.println(STATIC_b);
System.out.println(d);
}
}
Inner inner = new Inner();
inner.fun();
}
}
定义在实例方法中的局部类可以访问外部类的所有变量和方法,定义在静态方法中的局部类只能访问外部类的静态变量和方法。局部内部类的创建方式,在对应方法内,new 内部类(),如下:
public static void testStaticFunctionClass(){
class Inner {
}
Inner inner = new Inner();
}
匿名内部类
匿名内部类就是没有名字的内部类,日常开发中使用的比较多。
public class Outer {
private void test(final int i) {
new Service() {
public void method() {
for (int j = 0; j < i; j++) {
System.out.println("匿名内部类" );
}
}
}.method();
}
}
//匿名内部类必须继承或实现一个已有的接口
interface Service{
void method();
}
除了没有名字,匿名内部类还有以下特点:
- 匿名内部类必须继承一个抽象类或者实现一个接口。
- 匿名内部类不能定义任何静态成员和静态方法。
- 当所在的方法的形参需要被匿名内部类使用时,必须声明为 final。
- 匿名内部类不能是抽象的,它必须要实现继承的类或者实现的接口的所有抽象方法。
匿名内部类创建方式:
new 类/接口{
//匿名内部类实现部分
}
内部类的优点
我们为什么要使用内部类呢?因为它有以下优点:
- 一个内部类对象可以访问创建它的外部类对象的内容,包括私有数据!
- 内部类不为同一包的其他类所见,具有很好的封装性;
- 内部类有效实现了“多重继承”,优化 java 单继承的缺陷。
- 匿名内部类可以很方便的定义回调。
内部类有哪些应用场景
- 一些多算法场合
- 解决一些非面向对象的语句块。
- 适当使用内部类,使得代码更加灵活和富有扩展性。
- 当某个类除了它的外部类,不再被其他的类使用时。
局部内部类和匿名内部类访问局部变量的时候,为什么变量必须要加上final?
局部内部类和匿名内部类访问局部变量的时候,为什么变量必须要加上final呢?它内部原理是什么呢?
先看这段代码:
public class Outer {
void outMethod(){
final int a =10;
class Inner {
void innerMethod(){
System.out.println(a);
}
}
}
}
以上例子,为什么要加final呢?是因为生命周期不一致, 局部变量直接存储在栈中,当方法执行结束后,非final的局部变量就被销毁。而局部内部类对局部变量的引用依然存在,如果局部内部类要调用局部变量时,就会出错。加了final,可以确保局部内部类使用的变量与外层的局部变量区分开,解决了这个问题。
内部类相关,看程序说出运行结果
public class Outer {
private int age = 12;
class Inner {
private int age = 13;
public void print() {
int age = 14;
System.out.println("局部变量:" + age);
System.out.println("内部类变量:" + this.age);
System.out.println("外部类变量:" + Outer.this.age);
}
}
public static void main(String[] args) {
Outer.Inner in = new Outer().new Inner();
in.print();
}
}
运行结果:
局部变量:14
内部类变量:13
外部类变量:12
重写与重载
构造器(constructor)是否可被重写(override)
构造器不能被继承,因此不能被重写,但可以被重载。
重载(Overload)和重写(Override)的区别。重载的方法能否根据返回类型进行区分?
方法的重载和重写都是实现多态的方式,区别在于前者实现的是编译时的多态性,而后者实现的是运行时的多态性。
- 重载:发生在同一个类中,方法名相同参数列表不同(参数类型不同、个数不同、顺序不同),与方法返回值和访问修饰符无关,即重载的方法不能根据返回类型进行区分
- 重写:发生在父子类中,方法名、参数列表必须相同,返回值小于等于父类,抛出的异常小于等于父类,访问修饰符大于等于父类(里氏代换原则);如果父类方法访问修饰符为private则子类中就不是重写。
对象相等判断
== 和 equals 的区别是什么
==
: 它的作用是判断两个对象的地址是不是相等。即判断两个对象是不是同一个对象。(基本数据类型 ==
比较的是值,引用数据类型 ==
比较的是内存地址)
equals() : 它的作用也是判断两个对象是否相等。但它一般有两种使用情况:
情况1:类没有覆盖 equals() 方法。则通过 equals() 比较该类的两个对象时,等价于通过“==”比较这两个对象。
情况2:类覆盖了 equals() 方法。一般,我们都覆盖 equals() 方法来两个对象的内容相等;若它们的内容相等,则返回 true (即,认为这两个对象相等)。
举个例子:
public class test1 {
public static void main(String[] args) {
String a = new String("ab"); // a 为一个引用
String b = new String("ab"); // b为另一个引用,对象的内容一样
String aa = "ab"; // 放在常量池中
String bb = "ab"; // 从常量池中查找
if (aa == bb) // true
System.out.println("aa==bb");
if (a == b) // false,非同一对象
System.out.println("a==b");
if (a.equals(b)) // true
System.out.println("aEQb");
if (42 == 42.0) { // true
System.out.println("true");
}
}
}
说明:
- String中的equals方法是被重写过的,因为object的equals方法是比较的对象的内存地址,而String的equals方法比较的是对象的值。
- 当创建String类型的对象时,虚拟机会在常量池中查找有没有已经存在的值和要创建的值相同的对象,如果有就把它赋给当前引用。如果没有就在常量池中重新创建一个String对象。
hashCode 与 equals (重要)
HashSet如何检查重复
两个对象的 hashCode() 相同,则 equals() 也一定为 true,对吗?
hashCode和equals方法的关系
面试官可能会问你:“你重写过 hashcode 和 equals 么,为什么重写equals时必须重写hashCode方法?”
hashCode()介绍
hashCode() 的作用是获取哈希码,也称为散列码;它实际上是返回一个int整数。这个哈希码的作用是确定该对象在哈希表中的索引位置。hashCode() 定义在JDK的Object.java中,这就意味着Java中的任何类都包含有hashCode()函数。
散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)
为什么要有 hashCode
我们以“HashSet 如何检查重复”为例子来说明为什么要有 hashCode:
当你把对象加入 HashSet 时,HashSet 会先计算对象的 hashcode 值来判断对象加入的位置,同时也会与其他已经加入的对象的 hashcode 值作比较,如果没有相符的hashcode,HashSet会假设对象没有重复出现。但是如果发现有相同 hashcode 值的对象,这时会调用 equals()方法来检查 hashcode 相等的对象是否真的相同。如果两者相同,HashSet 就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。(摘自我的Java启蒙书《Head first java》第二版)。这样我们就大大减少了 equals 的次数,相应就大大提高了执行速度。
hashCode()与equals()的相关规定
如果两个对象相等,则hashcode一定也是相同的
两个对象相等,对两个对象分别调用equals方法都返回true
两个对象有相同的hashcode值,它们也不一定是相等的
因此,equals 方法被覆盖过,则 hashCode 方法也必须被覆盖
hashCode() 的默认行为是对堆上的对象产生独特值。如果没有重写 hashCode(),则该 class 的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)
对象的相等与指向他们的引用相等,两者有什么不同?
对象的相等 比的是内存中存放的内容是否相等而 引用相等 比较的是他们指向的内存地址是否相等。
值传递
当一个对象被当作参数传递到一个方法后,此方法可改变这个对象的属性,并可返回变化后的结果,那么这里到底是值传递还是引用传递
是值传递。Java 语言的方法调用只支持参数的值传递。当一个对象实例作为一个参数被传递到方法中时,参数的值就是对该对象的引用。对象的属性可以在被调用过程中被改变,但对对象引用的改变是不会影响到调用者的
为什么 Java 中只有值传递?
首先回顾一下在程序设计语言中有关将参数传递给方法(或函数)的一些专业术语。按值调用(call by value)表示方法接收的是调用者提供的值,而按引用调用(call by reference)表示方法接收的是调用者提供的变量地址。一个方法可以修改传递引用所对应的变量值,而不能修改传递值调用所对应的变量值。 它用来描述各种程序设计语言(不只是Java)中方法参数传递方式。
Java程序设计语言总是采用按值调用。也就是说,方法得到的是所有参数值的一个拷贝,也就是说,方法不能修改传递给它的任何参数变量的内容。
下面通过 3 个例子来给大家说明:
example 1
public static void main(String[] args) {
int num1 = 10;
int num2 = 20;
swap(num1, num2);
System.out.println("num1 = " + num1);
System.out.println("num2 = " + num2);
}
public static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;
System.out.println("a = " + a);
System.out.println("b = " + b);
}
结果:
a = 20
b = 10
num1 = 10
num2 = 20
解析:
在swap方法中,a、b的值进行交换,并不会影响到 num1、num2。因为,a、b中的值,只是从 num1、num2 的复制过来的。也就是说,a、b相当于num1、num2 的副本,副本的内容无论怎么修改,都不会影响到原件本身。
通过上面例子,我们已经知道了一个方法不能修改一个基本数据类型的参数,而对象引用作为参数就不一样,请看 example2.
example 2
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5 };
System.out.println(arr[0]);
change(arr);
System.out.println(arr[0]);
}
public static void change(int[] array) {
// 将数组的第一个元素变为0
array[0] = 0;
}
结果:
0
1
解析:
array 被初始化 arr 的拷贝也就是一个对象的引用,也就是说 array 和 arr 指向的时同一个数组对象。 因此,外部对引用对象的改变会反映到所对应的对象上。
通过 example2 我们已经看到,实现一个改变对象参数状态的方法并不是一件难事。理由很简单,方法得到的是对象引用的拷贝,对象引用及其他的拷贝同时引用同一个对象。
很多程序设计语言(特别是,C++和Pascal)提供了两种参数传递的方式:值调用和引用调用。有些程序员(甚至本书的作者)认为Java程序设计语言对对象采用的是引用调用,实际上,这种理解是不对的。由于这种误解具有一定的普遍性,所以下面给出一个反例来详细地阐述一下这个问题。
example 3
public class Test {
public static void main(String[] args) {
// TODO Auto-generated method stub
Student s1 = new Student("小张");
Student s2 = new Student("小李");
Test.swap(s1, s2);
System.out.println("s1:" + s1.getName());
System.out.println("s2:" + s2.getName());
}
public static void swap(Student x, Student y) {
Student temp = x;
x = y;
y = temp;
System.out.println("x:" + x.getName());
System.out.println("y:" + y.getName());
}
}
结果:
x:小李
y:小张
s1:小张
s2:小李
解析:
交换之前:
交换之后:
通过上面两张图可以很清晰的看出: 方法并没有改变存储在变量 s1 和 s2 中的对象引用。swap方法的参数x和y被初始化为两个对象引用的拷贝,这个方法交换的是这两个拷贝
总结
Java程序设计语言对对象采用的不是引用调用,实际上,对象引用是按值传递的。
下面再总结一下Java中方法参数的使用情况:
- 一个方法不能修改一个基本数据类型的参数(即数值型或布尔型》
- 一个方法可以改变一个对象参数的状态。
- 一个方法不能让对象参数引用一个新的对象。
值传递和引用传递有什么区别
- 值传递:指的是在方法调用时,传递的参数是按值的拷贝传递,传递的是值的拷贝,也就是说传递后就互不相关了。
- 引用传递:指的是在方法调用时,传递的参数是按引用进行传递,其实传递的引用的地址,也就是变量所对应的内存空间的地址。传递的是值的引用,也就是说传递前和传递后都指向同一个引用(也就是同一个内存空间)。
Java包
JDK 中常用的包有哪些
- java.lang:这个是系统的基础类;
- java.io:这里面是所有输入输出有关的类,比如文件操作等;
- java.nio:为了完善 io 包中的功能,提高 io 包中性能而写的一个新包;
- java.net:这里面是与网络有关的类;
- java.util:这个是系统辅助类,特别是集合类;
- java.sql:这个是数据库操作的类。
import java和javax有什么区别
刚开始的时候 JavaAPI 所必需的包是 java 开头的包,javax 当时只是扩展 API 包来说使用。然而随着时间的推移,javax 逐渐的扩展成为 Java API 的组成部分。但是,将扩展从 javax 包移动到 java 包将是太麻烦了,最终会破坏一堆现有的代码。因此,最终决定 javax 包将成为标准API的一部分。
所以,实际上java和javax没有区别。这都是一个名字。
4、集合
集合概述
常见的集合有哪些?
Java集合类主要由两个根接口 Collection 和 Map 派生出来的,Collection派生出 了三个子接口:List、Set、Queue (Java5新增的队列),因此ava集合大致也可分成List、Set、 Queue、Map四种接口体系。
注意:Collection是一个接口,Collections是一个 工具类,Map不是Collection的子接口。
Java集合框架图如下:
图中,List代表有序可重复集合,可直接根据元素的索引来访问;Set代表无序不可重复集合,只能根据元素本身来访问;Queue是队列集合。
Map代表的是存储 key-value
对的集合,可根据元素的key来访问value。
上图中淡绿色背景覆盖的是集合体系中常用的实现类,分别是ArrayList、LinkedList、 ArrayQueue、HashSet、TreeSet、 HashMap、 TreeMap等实现类。
线程安全的集合有哪些?线程不安全的呢?
线程安全的:
- Hashtable:比HashMap多了个线程安全。
- ConcurrentHashMap:是一种高效但是线程安全的集合。
- Vector:比Arraylist多了个同步化机制。
- Stack:栈,也是线程安全的,继承于Vector。
线性不安全的:
- HashMap
- Arraylist
- LinkedList
- HashSet
- TreeSet
- TreeMap
ArrayList
Arraylist与LinkedList异同点?
- 是否保证线程安全:ArrayList 和LinkedList都是不同步的,也就是不保证线程安全;
- 底层数据结构:Arraylist 底层使用的是Object数组;LinkedList 底层使用的是双向循环链表数据结构;
- 插入和删除是否受元素位置的影响:ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。比如:执行add(E e)方法的时候,ArrayList 会默认在将指定的素追加到此列表的末尾,这种情况时间复杂度就是0(1)。但是如果要在指定位置 i 插入和删除元素
的话( add(int index, E element))时间复杂度就为O(n-i)。因为在进行上述操作的时候集合中第i和第 i 个元素之后的 (n-i) 个元素都要执行向后位/向前移一位的操作。LinkedList采用链表存储,所以插入,删除元素时间复杂度不受元素位置的影响,都是近似 O(1) 而数组为近似O(n)。 - 是否支持快速随机访问:LinkedList不支持高效的随机元素访问,而ArrayList实现了RandmoAccess接口,所以有随机访问功能。快速随机访问就是通过元素的序号快速获取元素对象(对,应于get(int index) 方法)。
- 内存空间占用:ArrayList的空间浪费主要体现在在list列表的结尾会预留一定的容量空间,而LinkedList的空间花费则体现在它的每一个元素都需要消耗比ArrayList更多的空间(因为要存放直接后继和直接前驱以及数据)。
ArrayList与Vector区别?
- Vector是线程安全的,ArrayList不是线 程安全的。其中,Vector 在关键性的方法前面都加了
synchronized
关键字,来保证线程的安全性。如果有多个线程会访问到集合,那最好是使用Vector,因为不需要我们自己再去考虑和编写线程安全的代码。 - ArrayList在底层数组不够用时在原来的基础上扩展1.5倍,Vector是扩展1倍,这样ArrayList就有利于节约内存空间。
说一说ArrayList的扩容机制?
ArrayList扩容的本质就是计算出新的扩容数组的size后实例化,并将原有数组内容复制到新数组中去。
默认情况下,新的容量会是原容量的1.5倍。
public boolean add(E e) {
// 判断是否可以容纳e,若能,则直接添加在末尾;若不能,则进行扩容,然后再把e添加在末尾
ensureCapacityInternal(size + 1); // Increments modCount!!
// 将e添加到数组末尾
elementData[size++] = e;
return true;
}
// 每次在add()一个元素时,arraylist 都需要对这个list的容量进行判断。通过
// ensureCapacityInternal()方法确保当前ArrayList维护的数组具有存储新元素的能力,经过处理
// 之后将元素存储在数组elementData的尾部。
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 如果传入的是一个空数组,则最小容量取默认与minCapacity之间的最大值
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// 若ArrayList已有存储能力满足最低存储要求,则返回add直接添加元素;
// 如果最低要求的存储能力>ArrayList已有的存储能力,这就表示ArrayList存储能力不足,因此需要调用grow()方法进行扩容。
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// 获取elementData数组的存储空间长度
int oldCapacity = elementData.length;
// 扩容到原来的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 校验容量是否够
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 若预设值大于默认的最大值,则检查是否溢出
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// 调用Arrays.copyOf方法将elementData数组指向新的内存空间,
// 并将elementData的数组复制到新的内存空间。
elementData = Arrays.copyOf(elementData, newCapacity);
}
Array和ArrayList的区别?
- Array可以包含基本类型和对象类型;ArrayList 只能包含对象类型。
- Array大小是固定的;ArrayList 的大小是动态变化的。
- ArrayList 提供了更多的方法和特性,比如:addAll(),removeAll(),iterator()等。
HashMap
HashMap的底层数据结构是什么?
在JDK1.7和JDK1.8中有所差别:
在JDK1.7中,由 “数组+链表"
组成,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的。
在JDK1.8中,由 ”数组+链表+红黑树”
组成。当链表过长,则会严重影响HashMap的性能,红黑树搜索时间复杂度是0(logn),而链表是糟糕的O(n)。因此,JDK1.8 对数据结构做了进一步的优化, 引入了红黑树,链表和红黑树在达到一定条件会进行转换:
- 当链表超过 8 且数据总量超过 64 才会转红黑树。
- 将链表转换成红黑树前会判断,如果当前数组的长度小于64,那么会选择先进行数组扩容,而不是转换为红黑树,以减少搜索时间。
解决hash冲突的办法有哪些? HashMap用的哪种?
解决Hash冲突方法有:开放定址法、再哈希法、链地址法(拉链法)、建立公共溢出区。
HashMap中采用的是链地址法。
- 开放定址法也称为
再散列法
,基本思想就是,如果p=H(key)
出现冲突时,则以p
为基础,再次hash,p1=H(p)
,如果p1
再次出现冲突,则以p1
为基础,以此类推,直到找到一个不冲突的哈希地址p1
。因此开放定址法所需要的hash表的长度要大于等于所需要存放的元素,而且因为存在再次hash,所以只能在删除的节点上做标记,而不能真正删除节点。 - 再哈希法(双重散列,多重散列),提供多个不同的hash函数,当
R1=H1(key1)
发生冲突时,再计算R2=H2(key1)
,直到没有冲突为止。这样做虽然不易产生堆集,但增加了计算的时间。 - 链地址法(拉链法),将哈希值相同的元素构成一个同义词的单链表并将单链表的头指针存放在哈希表的第
i
个单元中,查找、插入和删除主要在同义词链表中进行。链表法适用于经常进行插入和删除的情况。 - 建立公共溢出区,将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区。
为什么在解决hash冲突的时候,不直接用红黑树? 而选择先用链表,再转红黑树?
因为红黑树需要进行左旋,右旋,变色这些操作来保持平衡,而单链表不需要。当元素小于8个的时候,此时做查询操作,链表结构已经能保证查询性能。当元素大于8个的时候,红黑树搜索时间复杂度是O(logn),而链表是0(n),此时需要红黑树来加快查询速度,但是新增节点的效率变慢了。
因此,如果一开始就用红黑树结构,元素太少,新增效率又比较慢,无疑这是浪费性能的。
HashMap默认加载因子是多少?为什么是0.75,不是0.6或者0.8?
回答这个问题前,我们先来看下HashMap的默认构造函数:
int threshold;// 容纳键值对的最大值
final float loadFactor;// 负载因子
int modCount;
int size;
Node[] table
的初始化长度length
(默认值是16),Load factor
为负载因子(默认值是0.75),threshold
是HashMap所能容纳键值对的最大值。threshold = length * Load factor
。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。
默认的loadFactor是0.75,0.75是对空间和时间效率的-一个平衡选择,一般不要 修改,除非在时间和空间比较特殊的情况下:
- 如果内存空间很多而又对时间效率要求很高,可以降低负载因子Loadfactor的值。
- 相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。
我们来追溯下作者在源码中的注释(JDK1.7) :
AS a genera1 rule, the default 1oad factor (.75) offers a good tradeoff betweentime and space costs.
Higher values decrease the space overhead but increase the lookup cost (reflected in most of the
operations of the Hashmap class, including get and put) 。
The expected number of entriesin the map and its 1oad factorshou1d be taken into account when
setting its initia1 capacity, so as to minimize the number of rehash operations.
If the initial capacity is greaterthan the maxi mum number of entries divided by the 1oad
factor, no rehashoperations will ever occur.
翻译过来大概的意思是:作为一般规则,默认负载因子(0.75) 在时间和空间成本上提供了很好的折衷。较高的值会降低空间开销,但提高查找成本(体现在大多数的HashMap类的操作,包括get和put)。设置初始大小时,应该考虑预计的entry数在map及其负载系数,并且尽量减少rehash操作的次数。如果初始容量大于最大条目数除以负载因子,rehash操作将不会发生。
HashMap 中Key的存储索引是怎么计算的?
首先根据key的值计算出hashcode的值,然后根据hashcode计算出hash值,最后通过 hash& ( length-1)
计算得到存储的位置。看看源码的实现:
// jdk1.7
// 方法一:
static int hash(int h) {
int h = hashSeed;
if(0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();// 第一步:取hashCode值
h = (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// 方法二:
static int indexFor(int h,int length) {
return h & (length-1);// 第三步:取模运算
}
// jdk1.8
static final int hash(Object key) {
int h;
return (key == null) ? 0 :(h = key.hashCode()) ^ (h >>> 16);
}
这里的Hash算法本质上就是三步:取key的hashCode值、根据hashCode计算出hash值、通过取模计算下标。其中,JDK1.7和1.8的不同之处,就在于第二步。我们来看下详细过程,以1.8为例,n为table的长度。
HashMap 的put 的方流程?
以JDK1.8为例,简要流程如下:
- 首先根据key的值计算hash值,找到该元素在数组中存储的下标;
- 如果数组是空的,则调用resize进行初始化;
- 如果没有哈希冲突直接放在对应的数组下标里;
- 如果冲突了,且key已经存在,就覆盖掉value;
- 如果冲突后,发现该节点是红黑树,就将这个节点挂在树上;
- 如果冲突后是链表,判断该链表是否大于8,如果大于8并且数组容量小于64,就进行扩容;如果链表节点大于8并且数组的容量大于64,则将这个结构转换为红黑树;否则,链表插入键值对,若key存在,就覆盖掉value。
HashMap 的扩容方式?
HashMap在容量超过负载因子所定义的容量之后,就会扩容。Java里的数组是无法自动扩容的,方法是将HashMap的大小扩大为原来数组的两倍,并将原来的对象放入新的数组中。
那扩容的具体步骤是什么?让我们看看源码。
先来看下JDK1.7的源码:
void resize(int newCapacity) { // 传入新的容量
Entry[] o1dTab1e = tab1e;// 引用扩容前的Entry数组
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) { // 扩容前的数组大小如果已经达到最大(2^30)了
thresho1d = Integer.MAX_VALUE; // 修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
return;
}
Entry[] newTable = new Entry[newCapacity]; // 初始化一个新的Entry数组
transfer(newTable); // 将数据转移到新的Entry数组里
tab1e = newTable;// HashMap的table属性引用新的Entry数组
threshold = (int) (newCapacity * 1oadFactor); // 修改阈值
}
这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer() 方法将原有Entry数组的元素拷贝到新的Entry数组里。
void transfer(Entry[] newTable) {
Entry[] src = table; // src引用了旧的Entry数组
int newCapacity = newTab1e.length;
for (int j = 0; j < src. length; j++) { // 遍历旧的Entry数组
Entry<K,V> e = src[j] ;
//取得旧Entry数组的每个元素
if (e != nu11) {
src[j] = nu11;// 释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
do {
Entry<K,V> next = e. next;
int i = indexFor(e.hash, newCapacity); // 重新计算每个元素在数组中的位置
e.next = newTab1e[]; // 标记[1]
newTable[i] = e; // 将元素放在数组上
e = next;// 访问下一个Entry链上的元素
} while (e != nu11);
}
}
}
newTable[i] 的引用赋给了e.next,也就是使用了单链表的头插入方法,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry 链的尾部(如果方法了Hash冲突的话)。
JDK1.8做了两处优化:
- resize之后,元素的位置在原来的位置,或者原来的位置+oldCap (原来哈希表的长度)。不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成 "
原索引+ oldCap
"。这个设计非常的巧妙,省去了重新计算hash值的时间。
如下图所示,n为 table 的长度,图(a)表示扩容前的 key1 和 key2 两种 key 确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。 - 元素在重新计算hash之后,因为n变为2倍,那么 n-1 的mask方位在高位多 1bit(红色),因此新的index就会发生这样的变化:
- JDK1.7中 rehash 的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置(头插法)。JDK1.8 不会倒置,使用尾插法。
一般用什么作为HashMap的key?
一般用Integer、String 这种不可变类当HashMap当key,而且String最为常用。
- 因为字符串是不可变的,所以在它创建的时候hashcode就被缓存了,不需要重新计算。这就是HashMap中的键往往都使用字符串的原因。
- 因为获取对象的时候要用到equals()和hashCode()方法,那么键对象正确的重写这两个方法是非常重要的,这些类已经很规范的重写了hashCode()以及equals()方法。
HashMap为什么线程不安全?
- 多线程下扩容死循环。JDK1.7中的HashMap使用头插法插入元素,在多线程的环境下,扩容的时候有可能导致环形链表的出现,形成死循环。因此,JDK1.8使用尾插法插入元素,在扩容时会保持链表元素原本的顺序,不会出现环形链表的问题。
- 多线程的put可能导致元素的丢失。多线程同时执行put操作,如果计算出来的索引位置是相同的,那会造成前一个key被后一个key覆盖,从而导致元素的丢失。此问题在JDK 1.7和JDK 1.8中都存在。
- put和get并发时,可能导致get为null。线程1执行put时,因为元素个数超出 threshold 而导致rehash,线程2此时执行get,有可能导致这个问题。此问题在JDK 1.7和JDK 1.8中都在。
CurrentHashMap
ConcurrentHashMap的实现原理是什么
ConcurrentHashMap在JDK1.7时:
是由 Segment
数组结构和 HashEntry
数组结构组成的,即 ConcurrentHashMap把哈希桶切分成小数组(Segment),每个小数组由n个HashEntry组成。其中,Segment继承了Reentrantlock
,所以Segment是一种可重入锁,HashEntry用于存储键值对数据。
ConcurrentHashMap在JDK1.8时:
选择了与HashMap相同的 数组+链表+红黑树
结构,在锁的实现上,抛弃了原有的Segment分段锁,采用CAS+synchronized
实现更加低粒度的锁。将锁级别控制在了更加粒度的哈希桶元素级别,也就是说只需要锁住这个链表头结点,就不会影响其他哈希桶的读写,大大提高了并发度。
ConcurrentHashMap的put 方法执行逻辑是什么?
先来看看JDK1.7:
首先,会尝试获取锁,如果获取失败,利用自旋获取锁;如果自旋重试的次数超过64次,则改为阻塞获取锁。
获取到锁后:
- 将当前Segment中的table 通过key的hashcode定位到HashEntry。
- 遍历该HashEntry,如果不为空则判断传入的key和当前遍历的key是否相等,相等则覆盖旧的value。
- 不为空则需要新建一个HashEntry并加入到Segment中,同时会先判断是否需要扩容。
- 释放Segment的锁。
再来看JDK1.8:
- 根据key计算出hash值。
- 判断是否需要进行初始化。
- 定位到Node,拿到首节点f,判断首节点
f
:
- 如果为null ,则通过cas的方式尝试添加。
- 如果为
f.hash = MOVED = -1
,说明其他线程在扩容,参与一起扩容。 - 如果都不满足,synchronized锁住f节点,判断是链表还是红黑树,遍历插入。
- 当在链表长度达到8的时候,数组扩容或者将链表转换为红黑树。
ConcurrentHashMap 的get方法是否要加锁,为什么?
get 方法不需要加锁。因为Node 的元素val 和 指针next 是用volatile
修饰的,在多线程环境下线程A修改结点的val 或者 新增节点的时候是对多线程B可见的。
这也是它比其他并发集合比如 hashTable,用 Collections.synchronizedMap()
包装的 HashMap 安全效率高的原因之一。
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
// 可以看到这些都用了volatile修饰
volatile V val;
volatile Node<K,V> next;
}
get方法不需要加锁与volatile修饰的哈希桶有关吗?
没有关系。哈希桶table 用volatile 修饰主要是保证数组扩容的时候保证可见性。
static final class Segment<K,V> extends ReetrantLock imlements Serializable {
// 存放数据的桶
transient volatile HashEntry<K,V>[] table;
}
JDK1.7和JDK1.8中ConcurrentHashMap的区别?
- 数据结构:取消了Segment分段锁的数据结构的,取而代之的是 数组+链表+红黑树 的数据结构。
- 保证线程安装机制:JDK1.7采用Segment的分段锁机制实现线程安全的,其中Segment继承自ReemtrantLock。JDK1.8采用CAS+Synchronized保证线程安全。
- 锁的粒度:原来是对需要进行数据操作的Segment加锁,现在调整为对每个数组元素加锁(Node)。
- 链表转为红黑树:定位结点的hash算法简化会带来弊端,Hash冲突加剧,因此在链表节点数量大于8时,会将链表转化为红黑树进行存储。
- 查询时间复杂度:从原来的遍历链表O(n),变成遍历红黑树O(logN)。
HashTable
说一下HashTale的锁机制?
HashTable是使用Synchronized来实现线程安全的,给整个哈希表加了一把大锁,多线程访问的时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞等待需要的锁被释放,在竞争激烈的多线程场景中性能就会非常差。
ConcurrentHashMap和HashTable的效率那个更高?为什么?
ConcurrentHashMap的效率要高于HashTable,因为HashTable给整个哈希表加了一把大锁从而实现线程安全。而ConcurrentHashMap的锁粒度更低,在JDK1.7中采用分段锁实现线程安全,在JDK1.8中采用的是CAS+Synchronized实现线程安全的。
5、IO流
java 中 IO 流分为几种?
- 按照流的流向分,可以分为输入流和输出流;
- 按照操作单元划分,可以划分为字节流和字符流;
- 按照流的角色划分为节点流和处理流。
Java Io流共涉及40多个类,这些类看上去很杂乱,但实际上很有规则,而且彼此之间存在非常紧密的联系, Java I0流的40多个类都是从如下4个抽象类基类中派生出来的。
- InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。
- OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。
按操作方式分类结构图:
按操作对象分类结构图:
BIO,NIO,AIO 有什么区别?
简答
- BIO:Block IO 同步阻塞式 IO,就是我们平常使用的传统 IO,它的特点是模式简单使用方便,并发处理能力低。
- NIO:Non IO 同步非阻塞 IO,是传统 IO 的升级,客户端和服务器端通过 Channel(通道)通讯,实现了多路复用。
- AIO:Asynchronous IO 是 NIO 的升级,也叫 NIO2,实现了异步非堵塞 IO ,异步 IO 的操作基于事件和回调机制。
详细回答
- BIO (Blocking I/O): 同步阻塞I/O模式,数据的读取写入必须阻塞在一个线程内等待其完成。在活动连接数不是特别高(小于单机1000)的情况下,这种模型是比较不错的,可以让每一个连接专注于自己的 I/O 并且编程模型简单,也不用过多考虑系统的过载、限流等问题。线程池本身就是一个天然的漏斗,可以缓冲一些系统处理不了的连接或请求。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。
- NIO (New I/O): NIO是一种同步非阻塞的I/O模型,在Java 1.4 中引入了NIO框架,对应 java.nio 包,提供了 Channel , Selector,Buffer等抽象。NIO中的N可以理解为Non-blocking,不单纯是New。它支持面向缓冲的,基于通道的I/O操作方法。 NIO提供了与传统BIO模型中的 Socket 和 ServerSocket 相对应的 SocketChannel 和 ServerSocketChannel 两种不同的套接字通道实现,两种通道都支持阻塞和非阻塞两种模式。阻塞模式使用就像传统中的支持一样,比较简单,但是性能和可靠性都不好;非阻塞模式正好与之相反。对于低负载、低并发的应用程序,可以使用同步阻塞I/O来提升开发速率和更好的维护性;对于高负载、高并发的(网络)应用,应使用 NIO 的非阻塞模式来开发
- AIO (Asynchronous I/O): AIO 也就是 NIO 2。在 Java 7 中引入了 NIO 的改进版 NIO 2,它是异步非阻塞的IO模型。异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。AIO 是异步IO的缩写,虽然 NIO 在网络操作中,提供了非阻塞的方法,但是 NIO 的 IO 行为还是同步的。对于 NIO 来说,我们的业务线程是在 IO 操作准备好时,得到通知,接着就由这个线程自行进行 IO 操作,IO操作本身是同步的。查阅网上相关资料,我发现就目前来说 AIO 的应用还不是很广泛,Netty 之前也尝试使用过 AIO,不过又放弃了。
Files的常用方法都有哪些?
- Files. exists():检测文件路径是否存在。
- Files. createFile():创建文件。
- Files. createDirectory():创建文件夹。
- Files. delete():删除一个文件或目录。
- Files. copy():复制文件。
- Files. move():移动文件。
- Files. size():查看文件个数。
- Files. read():读取文件。
- Files. write():写入文件。
6、反射
什么是反射机制?
JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制。
静态编译和动态编译
- 静态编译:在编译时确定类型,绑定对象
- 动态编译:运行时确定类型,绑定对象
反射机制优缺点
- 优点: 运行期类型的判断,动态加载类,提高代码灵活度。
- 缺点: 性能瓶颈:反射相当于一系列解释操作,通知 JVM 要做的事情,性能比直接的java代码要慢很多。
反射机制的应用场景有哪些?
反射是框架设计的灵魂。
在我们平时的项目开发过程中,基本上很少会直接使用到反射机制,但这不能说明反射机制没有用,实际上有很多设计、开发都与反射机制有关,例如模块化的开发,通过反射去调用对应的字节码;动态代理设计模式也采用了反射机制,还有我们日常使用的 Spring/Hibernate 等框架也大量使用到了反射机制。
举例:①我们在使用JDBC连接数据库时使用Class.forName()通过反射加载数据库的驱动程序;②Spring框架也用到很多反射机制,最经典的就是xml的配置模式。Spring 通过 XML 配置模式装载 Bean 的过程:1) 将程序内所有 XML 或 Properties 配置文件加载入内存中; 2)Java类里面解析xml或properties里面的内容,得到对应实体类的字节码字符串以及相关的属性信息; 3)使用反射机制,根据这个字符串获得某个类的Class实例; 4)动态配置实例的属性
Java获取反射的三种方法
- 通过new对象实现反射机制
- 通过路径实现反射机制
- 通过类名实现反射机制
public class Student {
private int id;
String name;
protected boolean sex;
public float score;
}
public class Get {
//获取反射机制三种方式
public static void main(String[] args) throws ClassNotFoundException {
//方式一(通过建立对象)
Student stu = new Student();
Class classobj1 = stu.getClass();
System.out.println(classobj1.getName());
//方式二(所在通过路径-相对路径)
Class classobj2 = Class.forName("fanshe.Student");
System.out.println(classobj2.getName());
//方式三(通过类名)
Class classobj3 = Student.class;
System.out.println(classobj3.getName());
}
}
7、网络编程
8、常用API
String相关
字符型常量和字符串常量的区别
- 形式上: 字符常量是单引号引起的一个字符 字符串常量是双引号引起的若干个字符
- 含义上: 字符常量相当于一个整形值(ASCII值),可以参加表达式运算 字符串常量代表一个地址值(该字符串在内存中存放位置)
- 占内存大小 字符常量只占一个字节 字符串常量占若干个字节(至少一个字符结束标志)
什么是字符串常量池?
字符串常量池位于堆内存中,专门用来存储字符串常量,可以提高内存的使用率,避免开辟多块空间存储相同的字符串,在创建字符串时 JVM 会首先检查字符串常量池,如果该字符串已经存在池中,则返回它的引用,如果不存在,则实例化一个字符串放到池中,并返回其引用。
String 是最基本的数据类型吗
不是。Java 中的基本数据类型只有 8 个 :byte、short、int、long、float、double、char、boolean;除了基本类型(primitive type),剩下的都是引用类型(referencetype),Java 5 以后引入的枚举类型也算是一种比较特殊的引用类型。
这是很基础的东西,但是很多初学者却容易忽视,Java 的 8 种基本数据类型中不包括 String,基本数据类型中用来描述文本数据的是 char,但是它只能表示单个字符,比如 ‘a’,‘好’ 之类的,如果要描述一段文本,就需要用多个 char 类型的变量,也就是一个 char 类型数组,比如“你好” 就是长度为2的数组 char[] chars = {‘你’,‘好’};
但是使用数组过于麻烦,所以就有了 String,String 底层就是一个 char 类型的数组,只是使用的时候开发者不需要直接操作底层数组,用更加简便的方式即可完成对字符串的使用。
String有哪些特性
- 不变性:String 是只读字符串,是一个典型的 immutable 对象,对它进行任何操作,其实都是创建一个新的对象,再把引用指向该对象。不变模式的主要作用在于当一个对象需要被多线程共享并频繁访问时,可以保证数据的一致性。
- 常量池优化:String 对象创建之后,会在字符串常量池中进行缓存,如果下次创建同样的对象时,会直接返回缓存的引用。
- final:使用 final 来定义 String 类,表示 String 类不能被继承,提高了系统的安全性。
String为什么是不可变的吗?
简单来说就是String类利用了final修饰的char类型数组存储字符,源码如下图所以:
/** The value is used for character storage. */
private final char value[];
String真的是不可变的吗?
我觉得如果别人问这个问题的话,回答不可变就可以了。 下面只是给大家看两个有代表性的例子:
1) String不可变但不代表引用不可以变
String str = "Hello";
str = str + " World";
System.out.println("str=" + str);
结果:
str=Hello World
解析:
实际上,原来String的内容是不变的,只是str由原来指向"Hello"的内存地址转为指向"Hello World"的内存地址而已,也就是说多开辟了一块内存区域给"Hello World"字符串。
2) 通过反射是可以修改所谓的“不可变”对象
// 创建字符串"Hello World", 并赋给引用s
String s = "Hello World";
System.out.println("s = " + s); // Hello World
// 获取String类中的value字段
Field valueFieldOfString = String.class.getDeclaredField("value");
// 改变value属性的访问权限
valueFieldOfString.setAccessible(true);
// 获取s对象上的value属性的值
char[] value = (char[]) valueFieldOfString.get(s);
// 改变value所引用的数组中的第5个字符
value[5] = '_';
System.out.println("s = " + s); // Hello_World
结果:
s = Hello World
s = Hello_World
解析:
用反射可以访问私有成员, 然后反射出String对象中的value属性, 进而改变通过获得的value引用改变数组的结构。但是一般我们不会这么做,这里只是简单提一下有这个东西。
是否可以继承 String 类
String 类是 final 类,不可以被继承。
String str="i"与 String str=new String(“i”)一样吗?
不一样,因为内存的分配方式不一样。String str="i"的方式,java 虚拟机会将其分配到常量池中;而 String str=new String(“i”) 则会被分到堆内存中。
String s = new String(“xyz”);创建了几个字符串对象
两个对象,一个是静态区的"xyz",一个是用new创建在堆上的对象。
String str1 = "hello"; //str1指向静态区
String str2 = new String("hello"); //str2指向堆上的对象
String str3 = "hello";
String str4 = new String("hello");
System.out.println(str1.equals(str2)); //true
System.out.println(str2.equals(str4)); //true
System.out.println(str1 == str3); //true
System.out.println(str1 == str2); //false
System.out.println(str2 == str4); //false
System.out.println(str2 == "hello"); //false
str2 = str1;
System.out.println(str2 == "hello"); //true
如何将字符串反转?
使用 StringBuilder 或者 stringBuffer 的 reverse() 方法。
示例代码:
// StringBuffer reverse
StringBuffer stringBuffer = new StringBuffer();
stringBuffer. append("abcdefg");
System. out. println(stringBuffer. reverse()); // gfedcba
// StringBuilder reverse
StringBuilder stringBuilder = new StringBuilder();
stringBuilder. append("abcdefg");
System. out. println(stringBuilder. reverse()); // gfedcba
数组有没有 length()方法?String 有没有 length()方法
数组没有 length()方法 ,有 length 的属性。String 有 length()方法。JavaScript中,获得字符串的长度是通过 length 属性得到的,这一点容易和 Java 混淆。
String 类的常用方法都有那些?
- indexOf():返回指定字符的索引。
- charAt():返回指定索引处的字符。
- replace():字符串替换。
- trim():去除字符串两端空白。
- split():分割字符串,返回一个分割后的字符串数组。
- getBytes():返回字符串的 byte 类型数组。
- length():返回字符串长度。
- toLowerCase():将字符串转成小写字母。
- toUpperCase():将字符串转成大写字符。
- substring():截取字符串。
- equals():字符串比较。
在使用 HashMap 的时候,用 String 做 key 有什么好处?
HashMap 内部实现是通过 key 的 hashcode 来确定 value 的存储位置,因为字符串是不可变的,所以当创建字符串时,它的 hashcode 被缓存下来,不需要再次计算,所以相比于其他对象更快。
String和StringBuffer、StringBuilder的区别是什么?String为什么是不可变的
可变性
String类中使用字符数组保存字符串,private final char value[],所以string对象是不可变的。StringBuilder与StringBuffer都继承自AbstractStringBuilder类,在AbstractStringBuilder中也是使用字符数组保存字符串,char[] value,这两种对象都是可变的。
线程安全性
String中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder是StringBuilder与StringBuffer的公共父类,定义了一些字符串的基本操作,如expandCapacity、append、insert、indexOf等公共方法。StringBuffer对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。StringBuilder并没有对方法进行加同步锁,所以是非线程安全的。
性能
每次对String 类型进行改变的时候,都会生成一个新的String对象,然后将指针指向新的String 对象。StringBuffer每次都会对StringBuffer对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用StirngBuilder 相比使用StringBuffer 仅能获得10%~15% 左右的性能提升,但却要冒多线程不安全的风险。
对于三者使用的总结
如果要操作少量的数据用 = String
单线程操作字符串缓冲区 下操作大量数据 = StringBuilder
多线程操作字符串缓冲区 下操作大量数据 = StringBuffer
包装类相关
自动装箱与拆箱
- 装箱:将基本类型用它们对应的引用类型包装起来;
- 拆箱:将包装类型转换为基本数据类型;
int 和 Integer 有什么区别
Java 是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入了基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java 为每一个基本数据类型都引入了对应的包装类型(wrapper class),int 的包装类就是 Integer,从 Java 5 开始引入了自动装箱/拆箱机制,使得二者可以相互转换。
Java 为每个原始类型提供了包装类型:
原始类型: boolean,char,byte,short,int,long,float,double
包装类型:Boolean,Character,Byte,Short,Integer,Long,Float,Double
Integer a= 127 与 Integer b = 127相等吗
对于对象引用类型:==
比较的是对象的内存地址。
对于基本数据类型:==
比较的是值。
如果整型字面量的值在-128到127之间,那么自动装箱时不会new新的Integer对象,而是直接引用常量池中的Integer对象,超过范围 a1==b1的结果是false
public static void main(String[] args) {
Integer a = new Integer(3);
Integer b = 3; // 将3自动装箱成Integer类型
int c = 3;
System.out.println(a == b); // false 两个引用没有引用同一对象
System.out.println(a == c); // true a自动拆箱成int类型再和c比较
System.out.println(b == c); // true
Integer a1 = 128;
Integer b1 = 128;
System.out.println(a1 == b1); // false
Integer a2 = 127;
Integer b2 = 127;
System.out.println(a2 == b2); // true
}