激活函数的作用

首先,激活函数不是真的要去激活什么。在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题。

比如在下面的这个问题中:

ceres激活函数 激活函数relu怎么读_激活函数

如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类。

ceres激活函数 激活函数relu怎么读_激活函数_02

但如果情况变得复杂了一点呢?在上图中(图片来源),数据就变成了线性不可分的情况。在这种情况下,简单的一条直线就已经不能够对样本进行很好地分类了。

ceres激活函数 激活函数relu怎么读_ReLU_03

于是我们尝试引入非线性的因素,对样本进行分类。

在神经网络中也类似,我们需要引入一些非线性的因素,来更好地解决复杂的问题。而激活函数恰好能够帮助我们引入非线性因素,它使得我们的神经网络能够更好地解决较为复杂的问题。

激活函数的定义及其相关概念

在ICML2016的一篇论文Noisy Activation Functions中,作者将激活函数定义为一个几乎处处可微的 h : R → R 。

ceres激活函数 激活函数relu怎么读_ceres激活函数_04

在实际应用中,我们还会涉及到以下的一些概念:a.饱和当一个激活函数h(x)满足

limn→+∞h′(x)=0limn→+∞h′(x)=0

时我们称之为 右饱和。

当一个激活函数h(x)满足

limn→−∞h′(x)=0limn→−∞h′(x)=0

时我们称之为 左饱和。当一个激活函数,既满足左饱和又满足又饱和时,我们称之为

饱和。

b.硬饱和与软饱和对任意的xx,如果存在常数cc,当x>cx>c时恒有 h′(x)=0h′(x)=0则称其为右硬饱和,当x<cx<c时恒 有h′(x)=0h′(x)=0则称其为左硬饱和。若既满足左硬饱和,又满足右硬饱和,则称这种激活函数为硬饱和。但如果只有在极限状态下偏导数等于0的函数,称之为软饱和。

Sigmoid函数

Sigmoid函数曾被广泛地应用,但由于其自身的一些缺陷,现在很少被使用了。Sigmoid函数被定义为:

f(x)=11+e−xf(x)=11+e−x

函数对应的图像是:

ceres激活函数 激活函数relu怎么读_神经网络_05

优点:1.Sigmoid函数的输出映射在(0,1)(0,1)之间,单调连续,输出范围有限,优化稳定,可以用作输出层。2.求导容易。

缺点:1.由于其软饱和性,容易产生梯度消失,导致训练出现问题。2.其输出并不是以0为中心的。

tanh函数

现在,比起Sigmoid函数我们通常更倾向于tanh函数。tanh函数被定义为

tanh(x)=1−e−2x1+e−2xtanh(x)=1−e−2x1+e−2x

函数位于[-1, 1]区间上,对应的图像是:

ceres激活函数 激活函数relu怎么读_ceres激活函数_06

优点:

1.比Sigmoid函数收敛速度更快。

2.相比Sigmoid函数,其输出以0为中心。

缺点:

还是没有改变Sigmoid函数的最大问题——由于饱和性产生的梯度消失。

ReLU

ReLU是最近几年非常受欢迎的激活函数。被定义为

y={0x(x≤0)(x>0)y={0(x≤0)x(x>0)

对应的图像是:

ceres激活函数 激活函数relu怎么读_神经网络_07

但是除了ReLU本身的之外,TensorFlow还提供了一些相关的函数,比如定义为min(max(features, 0), 6)的tf.nn.relu6(features, name=None);或是CReLU,即tf.nn.crelu(features, name=None)。其中(CReLU部分可以参考 这篇论文)。

优点:

1.相比起Sigmoid和tanh,ReLU (e.g. a factor of 6 in Krizhevsky et al.)在SGD中能够快速收敛。例如在下图的实验中,在一个四层的卷积神经网络中,实线代表了ReLU,虚线代表了tanh,ReLU比起tanh更快地到达了错误率0.25处。据称,这是因为它线性、非饱和的形式。

ceres激活函数 激活函数relu怎么读_神经网络_08

2.Sigmoid和tanh涉及了很多很expensive的操作(比如指数),ReLU可以更加简单的实现。

3.有效缓解了梯度消失的问题。

4.在没有无监督预训练的时候也能有较好的表现。

ceres激活函数 激活函数relu怎么读_数据_09

5.提供了神经网络的稀疏表达能力。

缺点:随着训练的进行,可能会出现神经元死亡,权重无法更新的情况。如果发生这种情况,那么流经神经元的梯度从这一点开始将永远是0。也就是说,ReLU神经元在训练中不可逆地死亡了。

LReLU、PReLU与RReLU

ceres激活函数 激活函数relu怎么读_神经网络_10

通常在LReLU和PReLU中,我们定义一个激活函数为

f(yi)={yiaiyiif(yi>0)if(yi≤0)f(yi)={yiif(yi>0)aiyiif(yi≤0)

-LReLU当aiai比较小而且固定的时候,我们称之为LReLU。LReLU最初的目的是为了避免梯度消失。但在一些实验中,我们发现LReLU对准确率并没有太大的影响。很多时候,当我们想要应用LReLU时,我们必须要非常小心谨慎地重复训练,选取出合适的aa,LReLU的表现出的结果才比ReLU好。因此有人提出了一种自适应地从数据中学习参数的PReLU。

-PReLU

PReLU是LReLU的改进,可以自适应地从数据中学习参数。PReLU具有收敛速度快、错误率低的特点。PReLU可以用于反向传播的训练,可以与其他层同时优化。

ceres激活函数 激活函数relu怎么读_神经网络_11

在论文Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification中,作者就对比了PReLU和ReLU在ImageNet model A的训练效果。

值得一提的是,在tflearn中有现成的LReLU和PReLU可以直接用。

-RReLU在RReLU中,我们有

yji={xjiajixjiif(xji>0)if(xji≤0)yji={xjiif(xji>0)ajixjiif(xji≤0)

aji∼U(l,u),l<uandl,u∈[0,1)aji∼U(l,u),l<uandl,u∈[0,1)

其中, ajiaji是一个保持在给定范围内取样的随机变量,在测试中是固定的。RReLU在一定程度上能起到正则效果。

ceres激活函数 激活函数relu怎么读_数据_12

在论文Empirical Evaluation of Rectified Activations in Convolution Network中,作者对比了RReLU、LReLU、PReLU、ReLU 在CIFAR-10、CIFAR-100、NDSB网络中的效果。

ELU

ELU被定义为

f(x)={a(ex−1)xif(x<0)if(0≤x)f(x)={a(ex−1)if(x<0)xif(0≤x)

其中 a>0a>0。

ceres激活函数 激活函数relu怎么读_激活函数_13

优点:1.ELU减少了正常梯度与单位自然梯度之间的差距,从而加快了学习。2.在负的限制条件下能够更有鲁棒性。

ELU相关部分可以参考这篇论文。

Softplus与Softsign

Softplus被定义为

f(x)=log(ex+1)f(x)=log(ex+1)

Softsign被定义为

f(x)=x|x|+1f(x)=x|x|+1

目前使用的比较少,在这里就不详细讨论了。TensorFlow里也有现成的可供使用。 激活函数相关TensorFlow的官方文档