想要做个opencv识别车牌的实战项目,于是先写了一个神经网络用于后续车牌数字、字母、汉字的识别。部分代码参考自这篇文章。识别的正确率可以达到百分之九十三以上,对于数字和字母的识别准确率很高,由于训练集较少,对于汉字的识别率较低。 编译器:vs2019 环境:OpenCV3.4.4 工程文件GitHub链接:链接 源代码:
#include <opencv2/opencv.hpp>
#include<iostream>
#include<stdio.h>
#include <string>
#include <fstream>
using namespace std;
using namespace cv;
using namespace cv::ml;
#define Car_Num 74 //测试集数量
#define Train_Num 14504 //训练集数量
#define Test_Num 1665 //测试集数量
#define Train_Rows 20 //训练集行数
#define Train_Cols 20 //训练集列数
#define _CRT_SECURE_NO_WARNINGS
Mat one_hot(Mat label, int classes_num);
void RandomArray(Mat Train, Mat Label, int num);
void read_image(const string path, Mat output_img, Mat label);
// 训练集数组,将训练集对应于一个数组
string Test_Arr[] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", \
"A", "B", "C", "D", "E", "F", "G", "H", "J", "K", \
"L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", \
"W", "X", "Y", "Z", \
"川", "鄂", "赣", "甘", "贵", "桂", "黑", "沪", \
"冀", "津", "京", "吉", "辽", "鲁", "蒙", "闽", \
"宁", "青", "琼", "陕", "苏", "晋", "皖", "湘", \
"新", "豫", "渝", "粤", "云", "藏", "浙" \
};
int main()
{
/* ---------第一部分:读取训练集及其标签---------- */
// 训练集
Mat TrainMat = Mat::zeros(Train_Num, Train_Rows* Train_Cols, CV_32FC1);
// 训练集标签
Mat TrainLabel = Mat::zeros(Train_Num, 1, CV_32SC1);
// 训练集路径
string Train_Path = "C:\\Users\\Tiam\\Desktop\\Digit_Recognition\\image\\train_picture";
// 测试集
Mat TestMat = Mat::zeros(Test_Num, Train_Rows * Train_Cols, CV_32FC1);
// 测试集标签
Mat TestLabel = Mat::zeros(Test_Num, 1, CV_32SC1);
// 测试集路径
string Test_Path = "C:\\Users\\Tiam\\Desktop\\Digit_Recognition\\image\\test_picture";
// 读取训练集
read_image(Train_Path, TrainMat, TrainLabel);
// 随机打乱训练集和标签
RandomArray(TrainMat, TrainLabel, Train_Num);
// ann神经网络的标签数据需要转为one-hot型
TrainLabel = one_hot(TrainLabel, size(Test_Arr));
/* ---------第二部分:构建ann训练模型并进行训练----------- */
cv::Ptr<cv::ml::ANN_MLP> ann = cv::ml::ANN_MLP::create();
// 定义模型的层次结构 输入层为400 隐藏层为64 输出层为65
Mat layerSizes = (Mat_<int>(1, 3) << Train_Rows* Train_Cols, 64, size(Test_Arr));
ann->setLayerSizes(layerSizes);
// 设置参数更新为误差反向传播法
ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001, 0.1);
// 设置激活函数为sigmoid
ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1.0, 1.0);
// 设置跌打条件 最大训练次数为100
ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS, 10, 0.0001));
// 开始训练
cv::Ptr<cv::ml::TrainData> train_data = cv::ml::TrainData::create(TrainMat, cv::ml::ROW_SAMPLE, TrainLabel);
cout << "开始进行训练..." << endl;
ann->train(train_data);
cout << "训练完成" << endl;
/* ---------第三部分:测试神经网络----------- */
// 读取测试集
read_image(Test_Path, TestMat, TestLabel);
Mat pre_out;
// 返回值为第一个图像的预测值 pre_out为整个batch的预测值集合
cout << "开始进行预测..." << endl;
float ret = ann->predict(TestMat, pre_out);
cout << "预测完成" << endl;
// 计算准确率
int equal_nums = 0;
Mat img_original;
for (int i = 0; i < pre_out.rows; i++)
{
// 获取每一个结果的最大值所在下标
Mat temp = pre_out.rowRange(i, i + 1);
double maxVal = 0;
cv::Point maxPoint;
cv::minMaxLoc(temp, NULL, &maxVal, NULL, &maxPoint);
int max_index = maxPoint.x;
int test_index = TestLabel.at<int32_t>(i, 0);
if (max_index == test_index)
{
equal_nums++;
}
此处可以查看每张图片的测试结果
//img_original = TestMat.row(i);
//img_original = img_original.reshape(0, Train_Rows);
//imshow("test", img_original);
//waitKey(0);
//cout << Test_Arr[max_index] << endl;
}
float acc = float(equal_nums) / float(pre_out.rows);
cout << "测试数据集上的准确率为:" << acc * 100 << "%" << endl;
}
void read_image(const string path, Mat output_img, Mat label)
{
// 路径
char folder[100];
int n = 0;
// 读取训练集
for (int i = 0; i < size(Test_Arr); i++)
{
// 写入路径
sprintf_s(folder, "%s\\%d", path.c_str(), i);
vector<cv::String> imagePathList;
// 读取路径下所有图片
glob(folder, imagePathList);
for (int j = 0; j < imagePathList.size(); j++)
{
// 第n行的首地址
int* labelPtr = label.ptr<int>(n);
// 赋值
labelPtr[0] = i;
// 读取
auto img = imread(imagePathList[j]);
// 转换成灰度图
cvtColor(img, img, COLOR_RGB2GRAY);
// 二值化
threshold(img, img, 50, 255, THRESH_BINARY);
// 归一化
img = img / 255.0;
//imshow("img", img);
//waitKey(1);
// 转换成一行
Mat sample = img.reshape(0, 1);
// 将源图像的行复制到目标图像的特定行
sample.row(0).copyTo(output_img.row(n));
n++;
}
imagePathList.clear();
}
}
//将标签数据改为one-hot型
Mat one_hot(Mat label, int classes_num)
{
//[2]->[0 1 0 0 0 0 0 0 0 0]
int rows = label.rows;
Mat one_hot = Mat::zeros(rows, classes_num, CV_32FC1);
for (int i = 0; i < label.rows; i++)
{
int index = label.at<int32_t>(i, 0);
one_hot.at<float>(i, index) = 1.0;
}
return one_hot;
}
//随机打乱训练集和标签
void RandomArray(Mat Train, Mat Label,int num)
{
int tmp;
Mat img;
srand((int)time(NULL));
for (int i = 0; i < num; i++)
{
tmp = rand() % num;
Train.row(i).copyTo(img);
Train.row(tmp).copyTo(Train.row(i));
img.copyTo(Train.row(tmp));
int t2 = Label.at<int>(i, 0);
Label.at<int>(i, 0) = Label.at<int>(tmp, 0);
Label.at<int>(tmp, 0) = t2;
}
}