目录
- 人脸识别电风扇是什么?
- 为什么做?
- 需要什么?
- 现在开始
- 总结
- 后记
人脸识别电风扇是什么?
通过PC摄像头识别人脸,人在PC前时风扇自动打开,离开时自动关闭。
效果图:
人脸识别开启+人离开后3S关闭:
非本人不开启:
为什么做?
每到夏天就要开风扇,但我们并不是无时无刻都在电脑前,离开时(比如上厕所、下班)如果不关闭,就会造成资源浪费,但如果每次都关闭就会很麻烦。这个工具可以帮你省(zhuang)事(bi),又节(zhuang)能(bi)!
需要什么?
软件:
python核心包:face_recognition、serial、OpenCV
硬件:
pc(带摄像头)
arduino开发板
USB风扇
现在开始
逻辑:每读取一帧进行一次下图循环,循环结束后立即读取当前帧继续循环。
Created with Raphaël 2.2.0 开始 查找人脸 本人? 控制风扇开启 结束 3s内是否出现过? 无操作 控制风扇关闭 yes no yes no
OK,上代码!!
python:
# -*- coding: utf-8 -*-
# 摄像头头像识别
import face_recognition
import cv2
import threading
import time
import time
import serial
import sys
import os
import time
import re
#串口
global MAX_LOOP_NUM
global newCmd
MAX_LOOP_NUM = 10
print(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
def waitForCmdOKRsp():
maxloopNum = 0
while True:
line = ser.readline()
maxloopNum = maxloopNum + 1
try:
print("Rsponse : %s" % line.decode('utf-8'))
except:
pass
if (re.search(b'OK', line)):
break
elif (maxloopNum > MAX_LOOP_NUM):
sys.exit(0)
def sendAT_Cmd(serInstance, atCmdStr, waitforOk):
# print("Command: %s" % atCmdStr)
serInstance.write(atCmdStr.encode('utf-8'))
# or define b'string',bytes should be used not str
# if (waitforOk == 1):
# waitForCmdOKRsp()
# else:
# waitForCmdRsp()
class myThread2 (threading.Thread):#该线程用于控制开发板
def __init__(self, video_capture, name, counter):
threading.Thread.__init__(self)
self.video_capture = video_capture
def run(self):
global frame1
global turnon
turnon=0
# ser = serial.Serial("/dev/cu.usbmodemHIDP1", 9600, timeout=30)
try:#连接开发板
ser = serial.Serial("COM3", 9600, timeout=30)
except:
ser = serial.Serial("COM4", 9600, timeout=30)
i=1
t0=0
t1=0
t2=0
t3=0
t4=0
guanbi = 1
sendAT_Cmd(ser, 'b', 1)
while i < 2:
if turnon == 1:
t4 = t3
t3 = t2
t2 = t1
t1 = t0
t0 = 1
sendAT_Cmd(ser, 'a', 1)
guanbi = 0
time.sleep(0.6)
elif (t0 + t1 + t2 + t3 + t4) > 0:
t4 = t3
t3 = t2
t2 = t1
t1 = t0
t0 = 0
# sendAT_Cmd(ser, 'a', 1)
time.sleep(0.6)
elif guanbi == 1:
t4 = t3
t3 = t2
t2 = t1
t1 = t0
t0 = 0
# sendAT_Cmd(ser, 'b', 1)
# guanbi = 1
time.sleep(0.6)
else:
t4 = t3
t3 = t2
t2 = t1
t1 = t0
t0 = 0
sendAT_Cmd(ser, 'b', 1)
guanbi = 1
time.sleep(0.6)
thread2 = myThread2(1, "Thread-2", 1)
thread2.start()
# global video_capture
video_capture = cv2.VideoCapture(0)
# video_capture.open("rtsp://admin:xxxx@192.168.10.91:554/Streaming/Channels/101?transportmode=unicast")#读取海康威视摄像头
video_capture.read()#读取本地摄像头
#time.sleep(10)
# 本地图像
person1_image = face_recognition.load_image_file("zyw.jpg")
person1_face_encoding = face_recognition.face_encodings(person1_image)[0]
# # 本地图像二
person2_image = face_recognition.load_image_file("gzw.jpg")
person2_face_encoding = face_recognition.face_encodings(person2_image)[0]
# 本地图片三
person3_image = face_recognition.load_image_file("gzm1.jpg")
person3_face_encoding = face_recognition.face_encodings(person3_image)[0]
# Create arrays of known face encodings and their names
# 脸部特征数据的集合
known_face_encodings = [
person1_face_encoding,
person2_face_encoding,
person3_face_encoding,
]
# 人物名称的集合
known_face_names = [
"zhao",
"geng",
"Mingo",
]
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
#s=[]
ret, frame = video_capture.read()
#多线程
class myThread (threading.Thread):
def __init__(self, video_capture, name, counter):
threading.Thread.__init__(self)
self.video_capture = video_capture
def run(self):
global frame1
i=1
while i<2:
ret, frame1 = self.video_capture.read()
#frame = cv2.flip(frame1, -1)
# s.append(frame)
#time.sleep(0.3)
thread1 = myThread(video_capture, "Thread-1", 1)
thread1.start()
time.sleep(1)
while True:
# 读取摄像头画面
#ret, frame = video_capture.read()
frame = cv2.flip(frame1,1)#图像翻转:frame = cv2.flip(frame1, -1)
# 改变摄像头图像的大小,图像小,所做的计算就少
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# 根据encoding来判断是不是同一个人,是就输出true,不是为flase
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# 默认为unknown
#matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
matches = face_recognition.face_distance(known_face_encodings, face_encoding)
name = "Unknown"
min_distance = min(matches)
if min_distance < 0.4:
i = matches.argmin()
name = known_face_names[i]
print(name+":"+time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))+":"+str(min_distance))
turnon = 1
else:
turnon = 0
face_names.append(name)
if face_encodings==[]:
turnon = 0
process_this_frame = not process_this_frame
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# 矩形框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
#加上标签
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display
cv2.namedWindow('monitor',cv2.WINDOW_NORMAL)
#WINDOW_NORMAL:用户便可以改变窗口的大小(没有限制)
#WINDOW_AUTOSIZE:窗口大小会自动调整以适应所显示的图像,并且不能手动改变窗口大小.
#WINDOW_OPENGL:窗口创建的时候便会支持OpenGL
cv2.imshow('monitor', frame)
#print(str(time.time())+"a")
# 按Q退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
arduino:
#include "Keyboard.h"
void setup() {
// open the serial port:
Serial.begin(9600);
// initialize control over the keyboard:
Keyboard.begin();
pinMode(2, OUTPUT);
}
char inChar = 'b';
void loop() {
rial.available() > 0) {
inChar = Serial.read();
}
if (inChar == 'a') {
digitalWrite(2, HIGH); // turn the LED on (HIGH is the voltage level)
}
if (inChar == 'b') {
digitalWrite(2, LOW); // turn the LED off by making the voltage LOW
}
}
总结
现在你可能觉得很厉害,这玩意真是又方(zhuang)便(bi)、又节(zhuang)能(bi)!
但是!!!!!!!!!!!!
好吧,我承认他并不节能,但是还算 方(zhuang)便(bi) 吧??!!
后记
虽然用30%的CPU性能换取一个风扇开关功能是不合算的,但实现该功能并不是本文的最终目的,本文更多的是想帮助大家学习与了解“人脸识别”技术。
另外,项目其实还有很大优化空间。比如:当前代码逻辑是CPU每处理一帧后会立即处理下一帧,但这根本没必要。如果代码设计成每秒处理一帧的话,CPU占用是可以大大降低的。而这并不是本文重点,所以有兴趣的小伙伴可以自己研究。
最后,这玩意还有其他应用吗?