Keras layers API.
Aliases:
- Module
tf.compat.v1.keras.layers
Classes
-
class AbstractRNNCell
: Abstract object representing an RNN cell. -
class Activation
: Applies an activation function to an output. -
class ActivityRegularization
: Layer that applies an update to the cost function based input activity. -
class Add
: Layer that adds a list of inputs. -
class AdditiveAttention
: Additive attention layer, a.k.a. Bahdanau-style attention. -
class AlphaDropout
: Applies Alpha Dropout to the input. -
class Attention
: Dot-product attention layer, a.k.a. Luong-style attention. -
class Average
: Layer that averages a list of inputs. -
class AveragePooling1D
: Average pooling for temporal data. -
class AveragePooling2D
: Average pooling operation for spatial data. -
class AveragePooling3D
: Average pooling operation for 3D data (spatial or spatio-temporal). -
class AvgPool1D
: Average pooling for temporal data. -
class AvgPool2D
: Average pooling operation for spatial data. -
class AvgPool3D
: Average pooling operation for 3D data (spatial or spatio-temporal). -
class BatchNormalization
: Base class of Batch normalization layer (Ioffe and Szegedy, 2014). -
class Bidirectional
: Bidirectional wrapper for RNNs. -
class Concatenate
: Layer that concatenates a list of inputs. -
class Conv1D
: 1D convolution layer (e.g. temporal convolution). -
class Conv2D
: 2D convolution layer (e.g. spatial convolution over images). -
class Conv2DTranspose
: Transposed convolution layer (sometimes called Deconvolution). -
class Conv3D
: 3D convolution layer (e.g. spatial convolution over volumes). -
class Conv3DTranspose
: Transposed convolution layer (sometimes called Deconvolution). -
class ConvLSTM2D
: Convolutional LSTM. -
class Convolution1D
: 1D convolution layer (e.g. temporal convolution). -
class Convolution2D
: 2D convolution layer (e.g. spatial convolution over images). -
class Convolution2DTranspose
: Transposed convolution layer (sometimes called Deconvolution). -
class Convolution3D
: 3D convolution layer (e.g. spatial convolution over volumes). -
class Convolution3DTranspose
: Transposed convolution layer (sometimes called Deconvolution). -
class Cropping1D
: Cropping layer for 1D input (e.g. temporal sequence). -
class Cropping2D
: Cropping layer for 2D input (e.g. picture). -
class Cropping3D
: Cropping layer for 3D data (e.g. spatial or spatio-temporal). -
class CuDNNGRU
: Fast GRU implementation backed by cuDNN. -
class CuDNNLSTM
: Fast LSTM implementation backed by cuDNN. -
class Dense
: Just your regular densely-connected NN layer. -
class DenseFeatures
: A layer that produces a denseTensor
based on givenfeature_columns
. -
class DepthwiseConv2D
: Depthwise separable 2D convolution. -
class Dot
: Layer that computes a dot product between samples in two tensors. -
class Dropout
: Applies Dropout to the input. -
class ELU
: Exponential Linear Unit. -
class Embedding
: Turns positive integers (indexes) into dense vectors of fixed size. -
class Flatten
: Flattens the input. Does not affect the batch size. -
class GRU
: Gated Recurrent Unit - Cho et al. 2014. -
class GRUCell
: Cell class for the GRU layer. -
class GaussianDropout
: Apply multiplicative 1-centered Gaussian noise. -
class GaussianNoise
: Apply additive zero-centered Gaussian noise. -
class GlobalAveragePooling1D
: Global average pooling operation for temporal data. -
class GlobalAveragePooling2D
: Global average pooling operation for spatial data. -
class GlobalAveragePooling3D
: Global Average pooling operation for 3D data. -
class GlobalAvgPool1D
: Global average pooling operation for temporal data. -
class GlobalAvgPool2D
: Global average pooling operation for spatial data. -
class GlobalAvgPool3D
: Global Average pooling operation for 3D data. -
class GlobalMaxPool1D
: Global max pooling operation for temporal data. -
class GlobalMaxPool2D
: Global max pooling operation for spatial data. -
class GlobalMaxPool3D
: Global Max pooling operation for 3D data. -
class GlobalMaxPooling1D
: Global max pooling operation for temporal data. -
class GlobalMaxPooling2D
: Global max pooling operation for spatial data. -
class GlobalMaxPooling3D
: Global Max pooling operation for 3D data. -
class InputLayer
: Layer to be used as an entry point into a Network (a graph of layers). -
class InputSpec
: Specifies the ndim, dtype and shape of every input to a layer. -
class LSTM
: Long Short-Term Memory layer - Hochreiter 1997. -
class LSTMCell
: Cell class for the LSTM layer. -
class Lambda
: Wraps arbitrary expressions as aLayer
object. -
class Layer
: Base layer class. -
class LayerNormalization
: Layer normalization layer (Ba et al., 2016). -
class LeakyReLU
: Leaky version of a Rectified Linear Unit. -
class LocallyConnected1D
: Locally-connected layer for 1D inputs. -
class LocallyConnected2D
: Locally-connected layer for 2D inputs. -
class Masking
: Masks a sequence by using a mask value to skip timesteps. -
class MaxPool1D
: Max pooling operation for temporal data. -
class MaxPool2D
: Max pooling operation for spatial data. -
class MaxPool3D
: Max pooling operation for 3D data (spatial or spatio-temporal). -
class MaxPooling1D
: Max pooling operation for temporal data. -
class MaxPooling2D
: Max pooling operation for spatial data. -
class MaxPooling3D
: Max pooling operation for 3D data (spatial or spatio-temporal). -
class Maximum
: Layer that computes the maximum (element-wise) a list of inputs. -
class Minimum
: Layer that computes the minimum (element-wise) a list of inputs. -
class Multiply
: Layer that multiplies (element-wise) a list of inputs. -
class PReLU
: Parametric Rectified Linear Unit. -
class Permute
: Permutes the dimensions of the input according to a given pattern. -
class RNN
: Base class for recurrent layers. -
class ReLU
: Rectified Linear Unit activation function. -
class RepeatVector
: Repeats the input n times. -
class Reshape
: Reshapes an output to a certain shape. -
class SeparableConv1D
: Depthwise separable 1D convolution. -
class SeparableConv2D
: Depthwise separable 2D convolution. -
class SeparableConvolution1D
: Depthwise separable 1D convolution. -
class SeparableConvolution2D
: Depthwise separable 2D convolution. -
class SimpleRNN
: Fully-connected RNN where the output is to be fed back to input. -
class SimpleRNNCell
: Cell class for SimpleRNN. -
class Softmax
: Softmax activation function. -
class SpatialDropout1D
: Spatial 1D version of Dropout. -
class SpatialDropout2D
: Spatial 2D version of Dropout. -
class SpatialDropout3D
: Spatial 3D version of Dropout. -
class StackedRNNCells
: Wrapper allowing a stack of RNN cells to behave as a single cell. -
class Subtract
: Layer that subtracts two inputs. -
class ThresholdedReLU
: Thresholded Rectified Linear Unit. -
class TimeDistributed
: This wrapper allows to apply a layer to every temporal slice of an input. -
class UpSampling1D
: Upsampling layer for 1D inputs. -
class UpSampling2D
: Upsampling layer for 2D inputs. -
class UpSampling3D
: Upsampling layer for 3D inputs. -
class Wrapper
: Abstract wrapper base class. -
class ZeroPadding1D
: Zero-padding layer for 1D input (e.g. temporal sequence). -
class ZeroPadding2D
: Zero-padding layer for 2D input (e.g. picture). -
class ZeroPadding3D
: Zero-padding layer for 3D data (spatial or spatio-temporal).
Functions
-
Input(...)
:Input()
is used to instantiate a Keras tensor. -
add(...)
: Functional interface to theAdd
layer. -
average(...)
: Functional interface to theAverage
layer. -
concatenate(...)
: Functional interface to theConcatenate
layer. -
deserialize(...)
: Instantiates a layer from a config dictionary. -
dot(...)
: Functional interface to theDot
layer. -
maximum(...)
: Functional interface to theMaximum
layer that computes -
minimum(...)
: Functional interface to theMinimum
layer. -
multiply(...)
: Functional interface to theMultiply
layer. serialize(...)
-
subtract(...)
: Functional interface to theSubtract
layer.