人工智能知识体系
1、数学基础
微积分
线性代数
概率统计
信息论
集合论和图论
博弈论
2、技术基础
计算机原理
程序设计语言
操作系统
分布式系统
算法基础
3、机器学习算法
机器学习基础:估计方法、特征工程
线性模型:线性回归
逻辑回归
决策树模型:GBDT
支持向量机
贝叶斯分类器
神经网络——深度学习:MLP、CNN、RNN(LSTM)、GAN
聚类算法:K均值算法
4、机器学习分类
监督学习:分类任务、回归任务
无监督学习:聚类任务
迁移学习
强化学习
5、问题领域
语言识别
字符识别:手写识别
机器视觉
自然语言处理:机器翻译
自然语言理解
知识推理
自动控制
游戏理论和人机对弈:象棋、围棋、德州扑克、星际争霸
数据挖掘
6、机器学习架构
加速芯片:CPU、GPU、FPGA、ASIC(TPU)
虚拟化:容器(Decker)
分布式结构:Spark
库和计算框架:TensorFlow、scikt-learn、Caffe、MXNET、Theano、Torch、MicrosoftCNTK
7、可视化解决方案
8、云服务
AmazonML
GoogleCloudML
MicrosoftAzureML
阿里云ML
9、数据集和竞赛
ImageNet
MSCOCC
Kaggle
阿里天池
10、其他相关技术
知识图谱
统计语言模型
专家系统
遗传算法
博弈算法:纳什均衡