目录
一、介绍
二、真正的数据存在Storage中
三、Storage是连续一维数组
四、每个Tensor都有一个对应的Storage
一、介绍
torch.Tensor()大家都很熟悉,torch中操作的数据类型都是Tensor。Storage在实际使用中却很少接触,但它却非常重要,因为Tensor真正的数据存储在Storage中,接下来我将结合代码简单的介绍一下Storage。
官方文档:PACKAGE参考 - torch.Storage - 《PyTorch中文文档》
Storage的位置:torch.Storage()
官方解释:
一个
torch.Storage
是一个单一数据类型的连续一维数组。每个
torch.Tensor
都有一个对应的、相同数据类型的存储。
二、真正的数据存在Storage中
我们可以用 torch.Tensor()新建一个Tensor,并且规定形状。一个Tensor分为头信息区和存储区(Storage)。信息区主要保存张量的形状(size)、步长(stride)、数据类型(dtype)等信息。真正的数据保存在存储区。
代码如下:
import torch
data1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
tensor_data1 = torch.Tensor(data1)
print("tensor_data1.size():", tensor_data1.size())
print("tensor_data1.dtype:", tensor_data1.dtype)
print("tensor_data1.storage():", tensor_data1.storage())
# 输出如下:
# tensor_data1.size(): torch.Size([3, 3])
# tensor_data1.dtype: torch.float32
# tensor_data1.storage(): 1.0
# 2.0
# 3.0
# 4.0
# 5.0
# 6.0
# 7.0
# 8.0
# 9.0
可以看到Tensor有size、type等属性,真正的数据存在Storage中。
三、Storage是连续一维数组
Tensor无论形状如何,torch.Storage都是一个单一数据类型的连续一维数组。我们可以直接创建一个Storage对象,但是想要进行计算梯度、反向传播、正向传播等操作,还是需要将Storage转换成Tensor。
代码如下:
import torch
data1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
storage_date1 = torch.Storage(data1)
# Storage转Tensor
tensor_data1 = torch.Tensor(storage_date1)
print("storage_date1:", storage_date1)
# storage_date1: 1.0
# 2.0
# 3.0
# 4.0
# 5.0
# 6.0
# 7.0
# 8.0
# 9.0
# [torch.storage._TypedStorage(dtype=torch.float32, device=cpu) of size 9]
四、每个Tensor都有一个对应的Storage
Tensor有如下几种数据类型:
class DoubleTensor(Tensor): ...
class FloatTensor(Tensor): ...
class LongTensor(Tensor): ...
class IntTensor(Tensor): ...
class ShortTensor(Tensor): ...
class HalfTensor(Tensor): ...
class CharTensor(Tensor): ...
class ByteTensor(Tensor): ...
class BoolTensor(Tensor): ...
每种Tensor都有对应类型的Storage,使用torch.Tensor()新建默认是FloatTensor。
import torch
data1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
tensor_data1 = torch.Tensor(data1)
tensor_data331 = tensor_data1.view(3, 3, 1)
print("id(tensor_data1) == id(tensor_data331):", id(tensor_data1) == id(tensor_data331))
print("id(tensor_data1.storage()) == id(tensor_data331.storage()):", id(tensor_data1.storage()) == id(tensor_data331.storage()))
# id(tensor_data1) == id(tensor_data331): False
# id(tensor_data1.storage()) == id(tensor_data331.storage()): True
可以看到,虽然我将tensor_data1变换了形状付给另外一个变量,但是数据的内容并没有变,两个变量引用的是相同的数据存储。
而且我发现一个有意思的事情,一旦创建了Tensor,它的Storage数值是不变的。即使改变数据类型,它的真实值也不会变。比如下面这个例子,我将float的数据类型变成int,再变回float,它的小数也不会丢,内存地址也不会变:
import torch
data1 = [[1.1, 2.1, 3.1], [4.1, 5.1, 6.1], [7.1, 8.1, 9.1]]
tensor_data1 = torch.Tensor(data1)
tensor_data_int = tensor_data1.int()
tensor_data_f = tensor_data1.float()
print("tensor_data1:", tensor_data1.storage())
print("tensor_data_int:", tensor_data_int.storage())
print("tensor_data_f:", tensor_data_f.storage())
# 两个Tensor内存地址肯定不一样,因为是两个对象
print("id(tensor_data_int) == id(tensor_data_f):", id(tensor_data_int) == id(tensor_data_f))
# 虽然数据类型不一样,但是两个Storage内存地址一样,因为类型其实是跟着Tensor走的
print("id(tensor_data_int.storage()) == id(tensor_data_f.storage()):", id(tensor_data_int.storage()) == id(tensor_data_f.storage()))
# tensor_data1: 1.100000023841858
# 2.0999999046325684
# 3.0999999046325684
# 4.099999904632568
# 5.099999904632568
# 6.099999904632568
# 7.099999904632568
# 8.100000381469727
# 9.100000381469727
# [torch.storage._TypedStorage(dtype=torch.float32, device=cpu) of size 9]
# tensor_data_int: 1
# 2
# 3
# 4
# 5
# 6
# 7
# 8
# 9
# [torch.storage._TypedStorage(dtype=torch.int32, device=cpu) of size 9]
# tensor_data_f: 1.100000023841858
# 2.0999999046325684
# 3.0999999046325684
# 4.099999904632568
# 5.099999904632568
# 6.099999904632568
# 7.099999904632568
# 8.100000381469727
# 9.100000381469727
# [torch.storage._TypedStorage(dtype=torch.float32, device=cpu) of size 9]
# id(tensor_data_int) == id(tensor_data_f): False
# tensor_data_int.storage().type(): torch.int32 torch.float32
# id(tensor_data_int.storage()) == id(tensor_data_f.storage()): True
torch.Storage()就简单介绍到这里,关注不迷路(*^▽^*)