一,CPU主频:
这是一个最受新手关注的指标,指的就是CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某款CPU是多少兆赫兹的,而这个多少兆赫兹就是“CPU的主频”。在学校经常听见一些人问,XXX网吧的CPU2.66G!XXX网吧的才2G,有人用2.66G的赛扬与2.0G-2.66G的P4比,这是无知的表现,和他们争是无意义的:)。主频虽与CPU速度有关系,但确对不是绝对的正比关系,因为CPU的运算速度还要看CPU流水线(流水线下面介绍)的各方面性能指标(缓存、指令集,CPU位数等)。因此主频不代表CPU的整体性能,但提高主频对于提高CPU运算速度却是至关重要的。主频的计算公式为:主频=外频*倍频。

二:外频:
外频是CPU乃至整个计算机系统的基准频率,单位是MHz(兆赫兹)。在早期的电脑中,内存与主板之间的同步运行的速度等于外频,在这种方式下,可以理解为CPU外频直接与内存相连通,实现两者间的同步运行状态。对于目前的计算机系统来说,两者完全可以不相同,但是外频的意义仍然存在,计算机系统中大多数的频率都是在外频的基础上,乘以一定的倍数来实现,这个倍数可以是大于1的,也可以是小于1的。

三:倍频咯:倍频
  CPU的倍频,全称是倍频系数。CPU的核心工作频率与外频之间存在着一个比值关系,这个比值就是倍频系数,简称倍频。理论上倍频是从1.5一直到无限的,但需要注意的是,倍频是以以0.5为一个间隔单位。外频与倍频相乘就是主频,所以其中任何一项提高都可以使CPU的主频上升。  原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频 === 外频 x 倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高。

四:
流水线:
这东西学地理的应该懂,高一下册地理书有说,他相当于一个公程的一部分一部分,我自己打个比喻!比如:就拿跑步和走路来说,就分为2级流水线,即左脚,再右脚,再一直循环下去,一级的话就可以说成是双脚一起跳,这样效率当然低,对吧。。。。。。这就是生活的流水线,当你左脚走出去之后,如果发现前面有一堆大便,只好重来了(设一次一定走2步)这就是流水线级别上去之后跟随的错误一出来CPU就要重新计算。。。。。。。。也许我说得不太明白,下面引用别人的话来说,转自网友“毛笔小新”


在制造CPU的过程中,除了硬件设计之外,还有逻辑设计,流水线设计就属于逻辑设计范畴,举个例子来讲,比如说一家汽车工厂,在生产汽车的过程中采用了四个大组分别来完成四个生产步骤:1组生产汽车底盘,二组给底盘上装引擎,三组给汽车装外壳及轮胎,四组做喷漆,装玻璃及其他,这就叫做一条四级的流水线.(现在的大型汽车生产厂也的确是按照类似流水线来提高生产效率的). 假设每个步骤需要1小时,那么如果我们让1大组在做完1辆车的底盘后马上开始生产下一辆的底盘,二大组在做完一辆车的引擎后立刻投入下一辆车引擎的组装,以次类推三,四组的工作也如此,这样一来,每一小时就会有一辆奔驰或宝马被生产出来,这就相当于是CPU的指令排序执行. 但如果我们还想提升工厂的生产效率,又该怎么办呢?那么我们就可以将上述的每个大组在分成2个小组,形成一条8级的生产流水线,这样就形成每个小组(注意是"小组")只需要半小时就可以完成自己的工作,那么相应的每半小时就会有一辆汽车走下生产线,这样就提高了效率(这里不太好理解,请大家仔细想想就会明白).
根据这个道理,CPU的流水线也就不难理解了,只不过是把生产汽车变成了执行程序指令而已,原理上是相通的。



那么这里可以想到,如果再把流水线加长,是不是效率还可以提高呢? 当人们把这个想法运用到CPU设计中时才发现,由于采用流水线来安排指令,所以非常不灵活,一旦某一级的指令执行出错的话,整条流水线就会停止下来,再一极一级地去找出错误,然后把整条流水线清空,重新载入指令,这样一来,会浪费很多时间,执行效率反而十分低下,为了解决这个问题,科学家们又采用了各种预测技术来提高指令执行的正确率,希望在保持长流水线的同时尽量避免发生清空流水线的悲剧,这就是经常看到的Intel的广告"该处理器采用了先进的分支预测技术....",当你明白了上面我所讲的后,你就知道了吹得那么玄乎,其实也就不过如此.
还有不得不说的就是:长流水线会让CPU轻易达到很高的运行频率,但在这2G,3G的频率中又有多少是真正有效的工作频率呢? 而且级数越多,所累计出来的延迟越长,因为工作小组在交接工作时是会产生信号延迟的,虽然每个延迟很短,但20甚至30级的流水线所累计出来的延迟是不可忽视的,这样就形成了一个很好笑的局面,流水线技术为处理器提升了频率,但又因为自身的缺陷产生了很大的效率空白,将优势抵消掉,高频率的CPU还会带来高功耗和高发热量,所以说流水线并非越长越好


近年来Intel的奔四处理器经过了三个阶段的发展,最早的奔四采用的是(威廉)核心,该核心只有13级的流水线,普遍频率未上2G,速度一般,第二代的奔四采用的(northwoog北木)核心,这个核心有20级流水线,由于流水线级数比较合适,所以大副提升了奔四的速度,但又未影响执行效率,当时的奔四2.4A是一款经典产品,将AMD的速龙XP系列一直压制住,Intel因此尝到了甜头,很快就推出了Prescott(波塞冬)核心,这个长达31级流水线的新核心将奔四带入了近3G的速度,这个数字是AMD可望而不可及的,但人们很快发现新奔四的实际运行效率还不如老核心奔四,然尔频率却那么高,发热和功耗那么大,Intel凭借这块新核心"光荣"地获得了"高频低能"的美名,这个时候AMD适时推出了"速龙64"系列,全新的架构,20级的流水线,不高的发热与功耗,最重要的是低频高效,一举击败了新奔四,获得了很高的评价,Intel也吞下了自己造的苦果:被迫停止了4G奔四的开发,失去了不少的市场份额,连总裁贝瑞特也在IDF05上给大众下跪以求原谅.


CPU缓存:
CPU缓存(Cache Memory)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。
随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。

二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。
CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU产品中,一级缓存的容量基本在4KB到64KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB、2MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高

主板,又叫主机板(mainboard)、系统板(systembourd)和母板(motherboard);它安装在机箱内,是微机最基本的也是最重要的部件之一。 主板一般为矩形电路板,上面安装了组成计算机的主要电路系统,一般有BIOS芯片、I/O控制芯片、键盘和面板控制开关接口、指示灯插接件、扩充插槽、主板及插卡的直流电源供电接插件等元件。主板的另一特点,是采用了开放式结构。主板上大都有6-8个扩展插槽,供PC机外围设备的控制卡(适配器)插接。通过更换这些插卡,可以对微机的相应子系统进行局部升级,使厂家和用户在配置机型方面有更大的灵活性。 总之,主板在整个微机系统中扮演着举足重新的脚色。可以说,主板的类型和档次决定着整个微机系统的类型和档次,主板的性能影响着整个微机系统的性能。

显卡是很重要的电脑配件之一,它的性能好坏直接关系到电脑的显示性能的好坏,如2D画质的优劣和3D游戏的速度等等。如果你对显卡还不太了解,或者不知道上面的一些电器元件的作用,那下面就以华硕V8200Deluxe为例给大家介绍一下。显示芯片:它是显卡的心脏,其性能好坏直接决定了显卡性能的好坏。因为显示芯片负责处理显示数据显卡很重要的电脑配件之一,它的性能好坏直接关系到电脑的显示性能的好坏,如2D画质的优劣和3D游戏的速度等等。如果你对显卡还不太了解,或者不知道上面的一些电器元件的作用,那下面就以华硕V8200 Deluxe为例给大家介绍一下。希望你能掌握以下介绍的知识,以免被JS欺骗。
显示芯片:它是显卡的心脏,其性能好坏直接决定了显卡性能的好坏。因为显示芯片负责处理显示数据,它的速度越快数据处理就越快,性能也越好。现在,显示芯片的制造工艺越来越精良,普遍采用了0.15微米的技术,有的还采用了0.12微米技术,在芯片内集成的晶体管的数目也越来越多。如研发代号为NV20(正式名称叫做GeForce3)的Nvidia的新一代显示芯片里集成了5700万个晶体管,比Pentium 4处理器(大约是4200万个晶体管)还多,能完成以前由CPU负责处理的所有数据,真是名副其实的GPU(图形处理器)。
PCB线路板:它是显卡的基础,显卡上的所有电器元件都是安置在它上面的。目前的显卡PCB线路板分为4层板和6层板。4层板的成本比较低,在一些廉价的显卡上常见到,但和6层板相比在性能上要差一些。6层板有着更好的电器性能以及抗电磁干扰的能力,同时更方便显卡的布线,所以时常在一些高品质的显卡上运用。在PCB线路板上埋设的那些密密麻麻的数据线(又称为蛇行线)的线路我们称之为布线,显卡的布线是非常重要的,在设计时要尽量做到每条到芯片的数据线短一致,以保证数据的统一和准确地在同一时间到达芯片。但并不是每个显卡生产厂商都有实力来设计种布线,因此许多厂商都采用了所谓的“公板设计”——即采用显示芯片制造商提供的PCB线路板设计方案来生产,而那些自己有设计开发实力的厂商则往往在“公板设计”的基础上再进行优化设计,以生产具有更高的性能和稳定性的显卡。还有一种情况是“公板设计”做得很完美,做任何优化也是多余的,那么这些厂商就直接采用这种“公板设计”了。
显存:这4块大小规格都一样的元器件就是显存,它主要负责存储芯片处理的数据,就像内存一样。芯片读取显存上的数据进行处理后再放回显存,供像RAMDAC等其它部分使用,因此显存的带宽和速度影响了显示芯片的运行速度。打个比方:一块再好的芯片如果不能及时得到要处理的数据或者处理后的数据不能及时输出,这就像个永远吃不饱的饿汉,许多时间是在等待数据的到达,从而大大影响了显卡的性能。因此可以说,显存性能决定了显示芯片的性能能不能得到完全的发挥。
正因为上面的原因,显存的发展也紧跟着显示芯片的发展,从早期的DRAM到SDRAM,再发展到SGRAM,直到最近才使用的DDRRAM。目前高端的显卡都采用了DDRRAM作为显存,这是因为DDRRAM是SDRAM/SGRAM的一个扩展技术,能在一个时间周期内完成两次数据的传输(SDRAM/SGRAM只有一次),所以在相同的条件下DDRRAM能拥有SDRAM/SGRAM两倍的带宽,性能得到大大的提高,但价格也不菲。SDRAM虽然没有那么高的带宽,但它的价格低廉,所以SDRAM的显存多数使用在低端的显卡上,是那些囊中羞涩的的理想显存。SDRAM还有86只引脚的128位和54只引脚的64位之分,128位的性能比64位的更好,希望大家也要注意这点。至于SGRAM的显存,由于成本很高,目前的家用显卡只有Matrox的GX00系列、华硕和ELSA以及丽台的部分显卡在使用。
在显存编号末尾一般都有-7、-6、-5之类的字样(要看具体的厂商),它表示显存的速度——完成一个数据传输需要的时间,-5就是5纳秒,这当然是越快越好!这块显卡就是用了32MB的DDRRAM作为显存,很好地配合了Geforce3芯片的性能,让它发挥得游刃有余!
“金手指”:用来插在主板的插口上,和电脑的其它部分实行连接,有ISA/PCI/AGP 1X、2X、4X等规范。这个就是AGP4X的金手指。好的金手指部分颜色呈金色发暗,有一定厚度,而且边缘光滑,不会对APG插槽或你的手造成损伤。
显卡的BIOS:它存放着显卡的BIOS文件,目前采用的BIOS都是支持软件擦写的FLASH ROM等元器件,可以通过刷新软件来刷新你的BIOS文件的办法来升级显卡,让它有更好的性能和兼容性。
电容:它负责高频滤波、耦合等作用,有铝电解电容和钽电容之分。前者的优点在于容量大,但是问题在于漏电大、稳定性差,特别是劣质的电解电容;而后者是电容中最好的,也经常称为贴片电容,它工作稳定、误差小,惟一美中不足的是容量小,在一些环境中不实用,只能使用铝电容。
电阻:它也是不可小视的东西,目前在显卡上主要用贴片电阻。
VGA输入输出接口:它负责把显卡的显示信号输入显示器等设备。大部分显卡只提供15芯的VGA输出接口,用来连接显示器,另外一些显卡则提供诸如输出数字信号的DVI数字接口、和电视机相连的TVOUT(S-VIDEO)接口等。

硬盘是一种主要的电脑存储媒介,由一个或者多个铝制或者玻璃制的碟片组成。这些碟片外覆盖有铁磁性材料。绝大多数硬盘都是固定硬盘,被永久性地密封固定在硬盘驱动器中。不过,现在可移动硬盘越来越普及,种类也越来越多。

绝大多数台式电脑使用的硬盘要么采用 IDE 接口,要么采用 SCSI 接口。SCSI 接口硬盘的优势在于,最多可以有七种不同的设备可以联接在同一个控制器面板上。由于硬盘以每秒3000—10000转的恒定高速度旋转,因此,从硬盘上读取数据只需要很短的时间。在笔记本电脑中,硬盘可以在空闲的时候停止旋转,以便延长电池的使用时间。老式硬盘的存储容量最小只有 5MB,而且,使用的是直径达12英寸的碟片。现在的硬盘,存储容量高达数十 GB,台式电脑硬盘使用的碟片直径一般为3.5英寸,笔记本电脑硬盘使用的碟片直径一般为2.5英寸。新硬盘一般都在装配工厂中经过低级格式化,目的在于把一些原始的扇区鉴别信息存储在硬盘上。

内存在电脑中起着举足轻重的作用。内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。

通常所说的内存即指电脑系统中的RAM。 RAM有些像教室里的黑板,上课时老师不断地往黑板上面写东西,下课以后全部擦除。RAM要求每时每刻都不断地供电,否则数据会丢失。

如果在关闭电源以后RAM中的数据也不丢失就好了,这样就可以在每一次开机时都保证电脑处于上一次关机的状态,而不必每次都重新启动电脑,重新打开应用程序了。但是RAM要求不断的电源供应,那有没有办法解决这个问题呢?随着技术的进步,人们想到了一个办法,即给RAM供应少量的电源保持RAM的数据不丢失,这就是电脑的休眠功能,特别在Win2000里这个功能得到了很好的应用,休眠时电源处于连接状态,但是耗费少量的电能。

按内存条的接口形式,常见内存条有两种:单列直插内存条(SIMM),和双列直插内存条(DIMM)。SIMM内存条分为30线,72线两种。DIMM内存条与SIMM内存条相比引脚增加到168线。DIMM可单条使用,不同容量可混合使用,SIMM必须成对使用。

按内存的工作方式,内存又有FPA EDO DRAM和SDRAM(同步动态RAM)等形式。

FPA(FAST PAGE MODE)RAM 快速页面模式随机存取存储器:这是较早的电脑系统普通使用的内存,它每个三个时钟脉冲周期传送一次数据。

EDO(EXTENDED DATA OUT)RAM 扩展数据输出随机存取存储器:EDO内存取消了主板与内存两个存储周期之间的时间间隔,他每个两个时钟脉冲周期输出一次数据,大大地缩短了存取时间,是存储速度提高30%。EDO一般是72脚,EDO内存已经被SDRAM所取代。

S(SYSNECRONOUS)DRAM 同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。

DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。

RDRAM(RAMBUS DRAM) 存储器总线式动态随机存取存储器;RDRAM是RAMBUS公司开发的具有系统带宽,芯片到芯片接口设计的新型DRAM,他能在很高的频率范围内通过一个简单的总线传输数据。他同时使用低电压信号,在高速同步时钟脉冲的两边沿传输数据。INTEL将在其820芯片组产品中加入对RDRAM的支持。

内存的参数主要有两个:存储容量和存取时间。存储容量越大,电脑能记忆的信息越多。存取时间则以纳秒(NS)为单位来计算。一纳秒等于10^9秒。数字越小,表明内存的存取速度越快。