一、Int

四字节整数int n;为例,一共有32位,取值范围是 [-2147483648‬, 2147483647] ,一共是4,294,967,296种可能,它的精度可以说是小数点后一位都不保留,也就是只有整数,换句话说变量n可以表示实数范围内的4,294,967,296个数值。

二、FLoat

4字节32位,那么float类型也只能表示,或者说精确表示4,294,967,296个数值.

实际上float类型存储数据的间隔不是等间距的,而是在0的附近间距小,在远离0的位置间距大,为什么会这样,一会我们看一下float类型数据的存储规则就明白了,这里先来看一下int类型和float类型所表示数字的范围对比,这只是一个示意图。

//int
           [ *         *         *         0         *         *         * ]
//float
[ *          *    *    *   *  *  * * * * * 0 * * * * *  *  *   *    *    *          * ]
1
2
3
4


上面的示意图就是两者表示数字范围的差异,每个星号*就表示一个数字,float通过这种不等间距的分布,既扩大了范围也表示了小数,那么有没有问题呢?

当然有问题,饭就这么多,人多了自然不够吃了,因为远离0的位置间距越来越大,当要表示间距中间的一个数字时,只能找它附近离它最近的一个可以表示的数字来代替,这就导致了精度问题,比如我给一个float类型变量分别赋值为 4294967244 和 4294967295 ,再次输出时都变成了 4294967296,因为超过了精度,所以只能找最接近的数字代替。

[-3.4028235E38, 3.4028235E38]

精度:16777216 貌似是一个边界,超过这个数的数字开始不能精确表示了,16777216 已经被证实是一个边界,小于这个数的整数都可以精确表示,表示成科学技术法就是1.6777216 * 1 0 的7次方 

从这里可以看出一共8位有效数字,由于最高位最大为1不能保证所有情况,所以最少能保证7位有效数字是准确的,这也就是常说float类型数据的精度。

关于小数的精度与刚才的分析是一致的,当第8位有效数字发生变化时,float可能已经无法察觉到这种变化了。

总结
float的精度是保证至少7位有效数字是准确的
float的取值范围[-3.4028235E38, 3.4028235E38],精确范围是[-340282346638528859811704183484516925440, 340282346638528859811704183484516925440]
一个简单的测试float精度方法,C++代码中将数字赋值给float变量,如果给出警告warning C4305: “=”: 从“int”到“float”截断,则超出了float的精度范围,在我的测试中赋值为16777216及以下整数没有警告,赋值为16777217时给出了警告。