文章目录

  • RAM与ROM存储
  • 2.1 运行时数据区域
  • 2.1.1 程序计数器
  • 2.1.2 Java虚拟机栈
  • 2.1.3 本地方法栈
  • 2.1.4 Java堆
  • 2.1.5 方法区(NonHeap 非堆)
  • 静态域
  • 2.1.6 运行时常量池
  • 2.1.7 直接内存
  • 2.2 对象访问
  • 2.3 OutOfMemoryError异常(OOM)
  • 2.3.1 Java堆溢出
  • 2.3.2 虚拟机栈和本地方法栈溢出
  • 2.3.3 运行时常量池溢出
  • 2.3.4 方法区溢出
  • 2.3.5 本机直接内存溢出



java 内存大量char_堆内存

RAM与ROM存储

随机存储器(RAM, random access memory), 是与CPU直接交换数据的。

RAM-RamdomAccessMemory易挥发性随机存取存储器,高速存取,读写时间相等,且与地址无关,如计算机内存等。

ROM-Read Only Memory只读存储器。断电后信息不丢失,如计算机启动用的BIOS芯片。存取速度很低,(较RAM而言)且不能改写。由于不能改写信息,不能升级,现已很少使用。

ROM和RAM是计算机内存储器的两种型号,ROM表示的是只读存储器,即:它只能读出信息,不能写入信息,计算机关闭电源后其内的信息仍旧保存,一般用它存储固定的系统软件和字库等。RAM表示的是读写存储器,可其中的任一存储单元进行读或写操作,计算机关闭电源后其内的信息将不在保存,再次开机需要重新装入,通常用来存放操作系统,各种正在运行的软件、输入和输出数据、中间结果及与外存交换信息等,我们常说的内存主要是指RAM。

2.1 运行时数据区域

Java虚拟机在执行Java程序过程中会把它所管理的内存划分为若干个不同数据区域。

java 内存大量char_堆内存_02

2.1.1 程序计数器

程序计数器(Program Counter Register)是一块小的内存空间,作用可以看做是当前线程所执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(多核中的一个内核)只会执行一条线程中的指令。因此,为了i按成切换后能恢复到正确的执行位置,每条线程都需要一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,这类内存区域为“线程私有”的内存。

如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Native方法,这个计数器值则为空(Undefined)。次内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。

2.1.2 Java虚拟机栈

与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧(Stack Frame)用于存储局部变量表、操作栈、动态链接、方法出口等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

常有人把Java内存区分为堆内存(Heap)和栈内存(Stack),这种分发比较粗糙。

局部变量表存放了编译期可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它不等同于对象本身,根据不同虚拟机实现,它可能是一个指向对象起始地址的引用指针,也可能指向一个代表对象的句柄或其他榆次对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。

其中64位长度的long和double类型的数据会占用2个局部变量空间(Slot),其余的数据类型只占用1个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中)。
栈中的对象可共享。栈中的数据大小和生命周期是可以确定的,当没有引用指向数据时,这个数据就会消失。
变量和引用存储在栈中,常量存储在常量池中。

在Java虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常(如死循环调用):如果虚拟机栈可以动态扩展,当扩展时时无法申请到足够的内存时会抛出OutOfMemoryError异常。

2.1.3 本地方法栈

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,区别是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。

2.1.4 Java堆

对大多数应用来说,Java堆(Java Heap)是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域唯一目的就是存放对象实例,机会所有的对象实例都在这里分配内存(所有的对象实例以及数组都要在堆上分配)。

堆中存放所有new出来的对象及数组。堆中的对象不可共享。

Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”(Garbage Collected Heap)。从内存回收的角度看,现在收集器基本都是采用的分代收集算法,Java堆中可以细分为:新生代和老年代;再细致一点的有Eden空间、From Survivor空间、To Survivor空间等。

新生代中的GC Eden&Survivor
分代的唯一理由就是优化GC性能。如果分代的话,我们把新创建的对象放到某一地方,当GC的时候先把这块存“朝生夕死”对象的区域进行回收,这样就会腾出很大的空间出来。
HotSpot JVM把新生代分为了三部分:1个Eden区和2个Survivor区(分别叫from和to)。

因为年轻代中的对象基本都是朝生夕死的(80%以上),所以在年轻代的垃圾回收算法使用的是复制算法,复制算法的基本思想就是将内存分为两块,每次只用其中一块,当这一块内存用完,就将还活着的对象复制到另外一块上面。复制算法不会产生内存碎片。

在GC开始的时候,对象只会存在于Eden区和名为“From”的Survivor区,Survivor区“To”是空的。紧接着进行GC,Eden区中所有存活的对象都会被复制到“To”,而在“From”区中,仍存活的对象会根据他们的年龄值来决定去向。年龄达到一定值(年龄阈值,可以通过-XX:MaxTenuringThreshold来设置)的对象会被移动到年老代中,没有达到阈值的对象会被复制到“To”区域。经过这次GC后,Eden区和From区已经被清空。这个时候,“From”和“To”会交换他们的角色,也就是新的“To”就是上次GC前的“From”,新的“From”就是上次GC前的“To”。不管怎样,都会保证名为To的Survivor区域是空的。Minor GC会一直重复这样的过程,直到“To”区被填满,“To”区被填满之后,会将所有对象移动到年老代中。

根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以是扩展的,不过当前主流虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms控制)。如果堆中没有内存完成实例分配,并且堆也无法再扩展时,会抛出OutOfMemoryError异常。

JVM初始分配的内存由-Xms指定,默认是物理内存的1/64;JVM最大分配的内存由-Xmx指 定,默认是物理内存的1/4。默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制。因此服务器一般设置-Xms、-Xmx相等以避免在每次GC 后调整堆的大小。

栈与堆都是Java用来在RAM中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器(寄存器位于CPU中)。另外,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。

栈内存、堆内存的数据共享

栈内存的一个特点是数据共享,这样设计是为了减小内存消耗,前面定义了i=1,i和1都在栈内存内,如果再定义一个j=1,此时将j放入栈内存,然后查找栈内存中是否有1,如果有则j指向1。如果再给j赋值2,则在栈内存中查找是否有2,如果没有就在栈内存中放一个2,然后j指向2。也就是如果常量在栈内存中,就将变量指向该常量,如果没有就在该栈内存增加一个该常量,并将变量指向该常量。

堆内存没有数据共享的特点,前面定义的String s = new String( “Hello World” );后,变量s在栈内存内,Hello World 这个String对象在堆内存内。如果定义String w = new String( “Hello World” );,则会在堆内存创建一个新的String对象,变量w存放在栈内存,w指向这个新的String对象。堆内存中不同对象(指同一类型的不同对象)的比较如果用则结果肯定都是false,比如sw?当然不等,s和w指向堆内存中不同的String对象。如果判断两个String对象相等呢?用equals方法。

public class StringDemo{
  private static final String MESSAGE="taobao";
  public static void main(String [] args) {
    String a ="tao"+"bao";
    String b="tao";
    String c="bao";
    System.out.println(a==MESSAGE);
    System.out.println((b+c)==MESSAGE);
  }
}

正确答案: C
A.true true
B.false false
C.true false
D.false true

Java中String不是基本类型,但是有些时候和基本类型差不多,如String b = “tao” ; 可以对变量直接赋值,而不用 new 一个对象(当然也可以用 new)。

Java中的变量和基本类型的值存放于栈内存,**而new出来的对象本身存放于堆内存,指向对象的引用还是存放在栈内存。**例如如下的代码:

int i=1; 
String s = new String("Hello World");

变量i和s以及1存放在栈内存,而s指向的对象”Hello World”存放于堆内存。

java 内存大量char_Java_03

成员变量及其指向的字符串常量肯定都是在栈内存里的,变量 a 运算完也是指向一个字符串“ taobao ”啊?是不是同一个呢?这涉及到编译器优化问题。对于字符串常量的相加,在编译时直接将字符串合并,而不是等到运行时再合并。也就是说
String a = “tao” + “bao” ;和String a = “taobao” ;编译出的字节码是一样的。所以等到运行时,根据上面说的栈内存是数据共享原则,a和MESSAGE指向的是同一个字符串。

而对于后面的(b+c)又是什么情况呢?b+c只能等到运行时才能判定是什么字符串,编译器不会优化,想想这也是有道理的,编译器怕你对b的值改变,所以编译器不会优化。运行时b+c计算出来的"taobao"和栈内存里已经有的"taobao"是一个吗?不是。b+c计算出来的"taobao"应该是放在堆内存中的String对象。Java对String的相加是通过StringBuffer实现的,先构造一个StringBuffer里面存放”tao”,然后调用append()方法追加”bao”,然后将值为”taobao”的StringBuffer转化成String对象。StringBuffer对象在堆内存中,那转换成的String对象理所应当的也是在堆内存中。

下面改造一下这个语句

System.out.println( (b+c).intern()==MESSAGE);

结果是true,intern() 方法会先检查String 池 ( 或者说成栈内存 ) 中是否存在相同的字符串常量,如果有就返回。所以 intern()返回的就是MESSAGE指向的"taobao"。

再把变量b和c的定义改一下,

final String b = "tao"; 
final String c = "bao"; 
System.out.println((b+c)==MESSAGE);

现在b和c不可能再次赋值了,所以编译器将b+c编译成了”taobao”。因此,这时的结果是true。

在字符串相加中,只要有一个是非final类型的变量,编译器就不会优化,因为这样的变量可能发生改变,所以编译器不可能将这样的变量替换成常量。例如将变量b的final去掉,结果又变成了false。这也就意味着会用到StringBuffer对象,计算的结果在堆内存中。

String a = "tao"+"bao"; 
String b = new String("taobao"); 
      
System.out.println(a==MESSAGE); //true 
System.out.println(b==MESSAGE);  //false 
      
b = b.intern(); 
System.out.println(b==MESSAGE); //true 
System.out.println(a==a.intern()); //true
String str=new String("abc"); 创建了几个对象????

答案也是众所周知的,2个。

String str只是定义了一个名为str的String类型的变量,因此它并没有创建对象;=是对变量str进行初始化,将某个对象的引用(或者叫句柄)赋值给它,显然也没有创建对象;现在只剩下new String(“abc”)了。那么,new String(“abc”)为什么又能被看成"abc"和new String()呢?

我们来看一下被我们调用了的String的构造器:

public String(String original) {  //other code ...  }

我们常用的创建一个类的实例(对象)的方法有以下两种:
一、使用new创建对象。
二、调用Class类的newInstance方法,利用反射机制创建对象。

我们正是使用new调用了String类的上面那个构造器方法创建了一个对象,并将它的引用赋值给了str变量。同时我们注意到,被调用的构造器方法接受的参数也是一个String对象,这个对象正是"abc"。由此我们又要引入另外一种创建String对象的方式的讨论——引号内包含文本。

这种方式是String特有的,并且它与new的方式存在很大区别。

String str="abc";

毫无疑问,这行代码创建了一个String对象。

String a="abc";  String b="abc";   那这里呢?

答案还是一个。

String a="ab"+"cd";   再看看这里呢?

答案是三个。
说到这里,我们就需要引入对字符串池相关知识的回顾了。

在JAVA虚拟机(JVM)中存在着一个字符串池,其中保存着很多String对象,并且可以被共享使用,因此它提高了效率。由于String类是final的,它的值一经创建就不可改变,因此我们不用担心String对象共享而带来程序的混乱。字符串池由String类维护,我们可以调用intern()方法来访问字符串池。

我们再回头看看String a=“abc”;,这行代码被执行的时候,JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的这么一个对象,它的判断依据是String类equals(Object obj)方法的返回值。如果有,则不再创建新的对象,直接返回已存在对象的引用;如果没有,则先创建这个对象,然后把它加入到字符串池中,再将它的引用返回。因此,我们不难理解前面三个例子中头两个例子为什么是这个答案了。

只有使用引号包含文本的方式创建的String对象之间使用“+”连接产生的新对象才会被加入字符串池中。对于所有包含new方式新建对象(包括null)的“+”连接表达式,它所产生的新对象都不会被加入字符串池中,对此我们不再赘述。因此我们提倡大家用引号包含文本的方式来创建String对象以提高效率,实际上这也是我们在编程中常采用的。

java 内存大量char_java 内存大量char_04

2.1.5 方法区(NonHeap 非堆)

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做NonHeap(非堆),目的是与Java堆区分开来。在JVM中堆之外的内存称为非堆内存(Non-heap memory)。

JVM主要管理两种类型的内存:堆和非堆。简单来说堆就是Java代码可及的内存,是留给开发人员使用的;非堆就是JVM留给 自己用的,所以方法区、JVM内部处理或优化所需的内存(如JIT编译后的代码缓存)、每个类结构(如运行时常数池、字段和方法数据)以及方法和构造方法 的代码都在非堆内存中。

对于习惯在HotSpot虚拟机上开发和部署程序的开发者来说,很多人愿意把方法区称为“永久代”(Permanent Generation),本质上两者并不等价,仅仅是因为HotSpot虚拟机的设计团队选择把GC分代收集扩展至方法区,或者说使用永久代来实现方法区而已。

Java虚拟机规范对这个区域的限制非常宽松,除了和Java堆一样不需要连续的内存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾收集。这个区域的内存回收目标主要是针对常量池的回收和对类型的卸载。

当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。 JVM使用-XX:PermSize设置非堆内存初始值,默认是物理内存的1/64;由XX:MaxPermSize设置最大非堆内存的大小,默认是物理内存的1/4。

堆外内存(off-heap) & 堆内内存(on-heap)
一般情况,Java中分配的非空对象都是由Java虚拟机的垃圾收集器管理的,也称为堆内内存(on-heap memory)。虚拟机会定期对垃圾内存进行回收,在某些特定的时间点,它会进行一次彻底的回收(full gc)。彻底回收时,垃圾收集器会对所有分配的堆内内存进行完整的扫描,这意味着一个重要的事实——这样一次垃圾收集对Java应用造成的影响,跟堆的大小是成正比的。过大的堆会影响Java应用的性能。

对于这个问题,一种解决方案就是使用堆外内存(off-heap memory)。堆外内存意味着把内存对象分配在Java虚拟机的堆以外的内存,这些内存直接受操作系统管理(而不是虚拟机)。这样做的结果就是能保持一个较小的堆,以减少垃圾收集对应用的影响。

堆外内存,它和内存池一样,也能缩短垃圾回收时间,但是它适用的对象和内存池完全相反。内存池往往适用于生命期较短的可变对象,而生命期中等或较长的对象,正是堆外内存要解决的。

当然堆外内存也有它自己的问题,最大的问题就是你的数据结构变得不那么直观,如果数据结构比较复杂,就要对它进行串行化(serialization),而串行化本身也会影响性能。另一个问题是由于你可以使用更大的内存,你可能开始担心虚拟内存(即硬盘)的速度对你的影响了。

静态域

属于方法区的一部分,存放静态成员(static)。

2.1.6 运行时常量池

常量池指的是在编译期被确定,并被保存在已编译的.class文件中的一些数据。

除了包含代码中所定义的各种基本类型(如int、long等等)和对象型(如String及数组)的常量值(final)还包含一些以文本形式出现的符号引用,比如:类和接口的全限定名; 字段的名称和描述符; 方法和名称和描述符。虚拟机必须为每个被装载的类型维护一个常量池。常量池就是该类型所用到常量的一个有序集和,包括直接常量(string,integer和floating point常量)和对其他类型,字段和方法的符号引用。对于String常量,它的值是在常量池中的。

常量池,实际上分为两种形态:静态常量池和运行时常量池。

所谓静态常量池,即*.class文件中的常量池,class文件中的常量池不仅仅包含字符串(数字)字面量,还包含类、方法的信息,占用class文件绝大部分空间。

而运行时常量池,则是jvm虚拟机在完成类装载操作后,将class文件中的常量池载入到内存中,并保存在方法区中,我们常说的常量池,就是指方法区中的运行时常量池。

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息时常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

Java虚拟机对Class文件的每一部分的格式都有严格的规定,没一个字节用于存储哪种数据都必须复核规范上的要求,这样才会被虚拟机认可、装载和执行。但对于运行时常量池,Java虚拟机规范没有做任何细节的要求,不同的提供商实现的虚拟机可以按照自己的需求来实现这个内存区域。一般来说,除了保存Class文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。

运行时常量池相对于Class文件常量池的另外一个特征是具备动态性,Java语言并不要求常量一定只能在编译期产生,并非预置入Class文件中常量池的内容才能进入方法去运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用比较多的便是String类的intern()方法。

运行时常量池也是方法区的一部分,无法再申请到内存时会抛出OutOfMemoryError异常。

对于字符串:其对象的引用都是存储在栈中的,如果是编译期已经创建好(直接用双引号定义的)的就存储在常量池中,如果是运行期(new出来的)才能确定的就存储在堆中。对于equals相等的字符串,在常量池中永远只有一份,在堆中有多份。

常量池举例:

1 String s1 = "Hello";
 2 String s2 = "Hello";
 3 String s3 = "Hel" + "lo";
 4 String s4 = "Hel" + new String("lo");
 5 String s5 = new String("Hello");
 6 String s6 = s5.intern();
 7 String s7 = "H";
 8 String s8 = "ello";
 9 String s9 = s7 + s8;
10           
11 System.out.println(s1 == s2);  // true
12 System.out.println(s1 == s3);  // true
13 System.out.println(s1 == s4);  // false
14 System.out.println(s1 == s9);  // false
15 System.out.println(s4 == s5);  // false
16 System.out.println(s1 == s6);  // true

在java 中,直接使用==操作符,比较的是两个字符串的引用地址,并不是比较内容,比较内容请用String.equals()。

s1 == s2这个非常好理解,s1、s2在赋值时,均使用的字符串字面量,说白话点,就是直接把字符串写死,在编译期间,这种字面量会直接放入class文件的常量池中,从而实现复用,载入运行时常量池后,s1、s2指向的是同一个内存地址,所以相等。

s1 == s3这个地方有个坑,s3虽然是动态拼接出来的字符串,但是所有参与拼接的部分都是已知的字面量,在编译期间,这种拼接会被优化,编译器直接帮你拼好,因此String s3 = “Hel” + “lo”;在class文件中被优化成String s3 = “Hello”;,所以s1 == s3成立。

s1 == s4当然不相等,s4虽然也是拼接出来的,但new String(“lo”)这部分不是已知字面量,是一个不可预料的部分,编译器不会优化,必须等到运行时才可以确定结果,结合字符串不变定理,鬼知道s4被分配到哪去了,所以地址肯定不同。配上一张简图理清思路:

java 内存大量char_堆内存

s1 == s9也不相等,道理差不多,虽然s7、s8在赋值的时候使用的字符串字面量,但是拼接成s9的时候,s7、s8作为两个变量,都是不可预料的,编译器毕竟是编译器,不可能当解释器用,所以不做优化,等到运行时,s7、s8拼接成的新字符串,在堆中地址不确定,不可能与方法区常量池中的s1地址相同。

java 内存大量char_堆内存_06

s4 == s5已经不用解释了,绝对不相等,二者都在堆中,但地址不同。

s1 == s6这两个相等完全归功于intern方法,s5在堆中,内容为Hello ,intern方法会尝试将Hello字符串添加到常量池中,并返回其在常量池中的地址,因为常量池中已经有了Hello字符串,所以intern方法直接返回地址;而s1在编译期就已经指向常量池了,因此s1和s6指向同一地址,相等。

运行时常量池中的常量,基本来源于各个class文件中的常量池。程序运行时,除非手动向常量池中添加常量(比如调用intern方法),否则jvm不会自动添加常量到常量池。

**字面量(literal)**是用于表达源代码中一个固定值的表示法(notation)。几乎所有计算机编程语言都具有对基本值的字面量表示,诸如:整数、浮点数以及字符串;

2.1.7 直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域。

JDK1.4新加入了NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。

显然,本机直接内存的分配不会受到Java堆大小的限制,但是既然是内存,则肯定会受到本机总内存(包括RAM和SWAP区或者分页文件)的大小及处理器寻址空间的限制。服务器管理配置虚拟机参数时,一般会根据实际内存设置-Xmx等参数,但经常会忽略掉直接内存,使得各个内存区域的总和大于物理内存限制(包括物理上的和操作系统级别的限制),从而导致动态扩展是出现OutOfMemoryError异常。

2.2 对象访问

即使最简单的访问,也会涉及Java栈、Java堆、方法去三个最重要的内存区域之间的关联不关系。

Object obj = new Object();

假设这句代码出现在方法体中,那“Object obj”这部分的语义
将会反映到Java栈的本地变量表中,作为一个reference类型数据出现。而“new Object()”这部分语义将会反映到Java堆中,形成一块存储了Object类型所有实例数据值(Instance Data,对象中各个实例字段的数据)的结构化内存,根据具体类型以及虚拟机实现的对象内存布局(Object Memory Layout)的不同,这块内存的长度是不固定的。另外,在Java堆中还必须包含能查找到此对象类型数据(如对象类型、父类、实现的接口、方法等)的地址信息,这些类型数据则存储在方法区中。

由于reference类型在Java虚拟机规范里只规定了一个指向对象的引用,并没有定义这个引用应该通过哪种方式去定位,以及访问到Java堆中的对象的具体位置,因此不同虚拟机实现的对象访问方式会有所不用,主流的访问方式有两种:使用句柄和直接指针。

  • 列表内容如果使用句柄访问方式,Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据和类型数据各自的具体地址信息。
  • 如果使用直接指针访问方式,Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,reference中直接存储的就是对象地址。

使用句柄访问方式醉倒好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象非常普遍)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

使用直接指针访问方式最大好处就是速度更快,它节省了一次指针定位的时间开销。

2.3 OutOfMemoryError异常(OOM)

2.3.1 Java堆溢出

Java堆用于存储对象实例,我们只要不断创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制清除这些对象,就会在对象数量到达最大堆得容量限制后产生内存溢出异常。

将-Xms参数与-Xmx参数设置为一样可避免堆自动扩展。通过参数-XX:+heapDump OnOutOfMemoryError可以让虚拟机在出现内存溢出异常时Dump出当前的内存堆转储快照以便分析。

Java堆内存OOM异常:
java.lang.OutOfMemoryError:Java heap space

解决这个区域的异常,一般手段是通过内存映像分析工具(如Eclipse Memory Analyzer)对dump出来的堆转储快照进行分析,要分清楚是出现了内存泄漏(Memory Leak)[指由于疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并非指内存在物理上的消失,而是应用程序分配某段内存后,由于设计错误,失去了对该段内存的控制,因而造成了内存的浪费]还是内存溢出(Memory Overflow)。

如果是内存泄漏,可以进一步通过工具查看泄漏对象到GC Roots的引用链。就能找到泄漏对象是通过怎样的路径与GC Roots相关联并导致垃圾回收器无法自动回收它们的。

如果不存在泄漏,就是说内存中的对象却是都还必须存活着,那就应该检查虚拟机堆参数(-Xmx和-Xms),与机器物理内存对比看是否还可以调大。

2.3.2 虚拟机栈和本地方法栈溢出

由于在HotSpot虚拟机中并不区分虚拟机栈和本地方法栈,因此对于HotSpot来说,-Xoss参数(设置本地方法栈大小)虽然存在,但实际效果无效,栈容量只由-Xss参数设定。

关于虚拟机栈和本地方法栈,Java虚拟机规范中描述了两种异常:

  • 如果线程请求栈的深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。
  • 如果虚拟机在扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常。

2.3.3 运行时常量池溢出

如果要向运行时常量池中添加内容,最简单的做法就是使用String.intern()这个Native方法。该方法的作用是:如果池中已经包含一个等于此String对象的字符串,则返回代表池中这个字符串的String对象;否则,将此String对象包含的字符串添加到常量池中,并返回此String对象的引用。常量池分配在方法区内,可以通过-XX:PermSize和-XX:MaxPermSize限制方法区的大小,从而间接限制其中常量池的容量。

运行时常量池溢出,在OutOfMemoryError后面跟随提示信息“PermGen space”,说明运行时常量属于方法区(HotSpot虚拟机中的永久代)的一部分。

2.3.4 方法区溢出

方法区用于存放Class的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。

方法区异常:

OutOfMemoryError :PermGen space

PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,

在经常动态生成大量Class的应用中,要特别注意类的回收状况。畜类GCLib字节码增强外,还有:大量JSP活动太产生JSP文件的应用(JSP第一次运行时需要编译为Java类)、基于OSGi的应用等。

解决方法: 手动设置MaxPermSize大小修改TOMCAT_HOME/bin/catalina.sh 在“echo “Using CATALINA_BASE: $CATALINA_BASE””上面加入以下行: JAVA_OPTS="-server -XX:PermSize=64M -XX:MaxPermSize=128m

建议:将相同的第三方jar文件移置到tomcat/shared/lib目录下,这样可以达到减少jar 文档重复占用内存的目的。

2.3.5 本机直接内存溢出

DirectMemory容量可通过-XX:MaxDirectMemorySize指定,如果不指定,则默认与Java堆得最大值(-Xmx指定)一样。