(Histogram)又称柱状图、质量分布图,是一种统计报告图。直方图由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据类型,纵轴表示分布情况。在图像处理上,直方图是图像信息统计的有力工具。

  灰度直方图是指对图像的灰度信息进行统计,我们知道灰度图在图像处理中应用非常广泛,在前面的《OpenCV第三篇Canny边缘检测》、《OpenCV第五篇轮廓检测上》、《OpenCV第六篇轮廓检测下》均能找到灰度图的用武之地。因此灰度直方图具有较高的实用价值。下面先介绍灰度直方图的几个主要函数。

 

一.cvCreateHist

函数功能:创建直方图

函数原型:

CVAPI(CvHistogram*)  cvCreateHist( // Creates new histogram
  int dims,
  int* sizes,
  int type,
  float** ranges CV_DEFAULT(NULL),
  int uniform CV_DEFAULT(1)
);

参数说明:

第一个参数表示直方图维数,灰度图为1,彩色图为3。

第二个参数表示直方图维数的数目,其实就是sizes数组的维数。

第三个参数表示直方图维数尺寸的数组。

第四个参数表示直方图类型,为CV_HIST_ARRAY表示直方图数据表示为多维密集数组,为CV_HIST_TREE表示直方图数据表示为多维稀疏数组。

第五个参数表示归一化标识,其原理有点复杂。通常使用默认值即可。

函数说明:

直方图的数据结构如下所示:

typedef struct CvHistogram
{
int     type;
CvArr*  bins;
float   thresh[CV_MAX_DIM][2];  /* For uniform histograms. */
float** thresh2;                /* For non-uniform histograms. */
CvMatND mat;     /* Embedded matrix header for array histograms. */
}CvHistogram;

 

二.cvCalcHist

函数功能:根据图像计算直方图

函数原型:

void  cvCalcHist(
  IplImage** image,
  CvHistogram* hist,
  int accumulate CV_DEFAULT(0),
  const CvArr* mask CV_DEFAULT(NULL)
)

参数说明:

第一个参数表示输入图像。

第二个参数表示输出的直方图指针。

第三个参数表示累计标识。如果设置,则直方图在开始时不被清零。这个特征保证可以为多个图像计算一个单独的直方图,或者在线更新直方图。

第四个参数操作mask, 确定输入图像的哪个象素被计数。

函数说明:

这是个inline函数,函数内部会直接调用cvCalcArrHist( (CvArr**)image, hist, accumulate, mask );

 

其它直方图的函数介绍可以参阅:

http://www.opencv.org.cn/index.php/Cv%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86#.E7.9B.B4.E6.96.B9.E5.9B.BE

 

下面给出灰度直方图的代码示范:

    1. //图像的灰度直方图  
    2. //By MoreWindows ()  
    3. #include <opencv2/opencv.hpp>  
    4. #include <opencv2/legacy/compat.hpp>  
    5. using namespace std;  
    6. #pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"")  
    7. void FillWhite(IplImage *pImage)  
    8. {  
    9.     cvRectangle(pImage, cvPoint(0, 0), cvPoint(pImage->width, pImage->height), CV_RGB(255, 255, 255), CV_FILLED);  
    10. }  
    11. // 创建灰度图像的直方图  
    12. CvHistogram* CreateGrayImageHist(IplImage **ppImage)  
    13. {  
    14. int nHistSize = 256;  
    15. float fRange[] = {0, 255};  //灰度级的范围    
    16. float *pfRanges[] = {fRange};    
    17.     CvHistogram *pcvHistogram = cvCreateHist(1, &nHistSize, CV_HIST_ARRAY, pfRanges);  
    18.     cvCalcHist(ppImage, pcvHistogram);  
    19. return pcvHistogram;  
    20. }  
    21. // 根据直方图创建直方图图像  
    22. IplImage* CreateHisogramImage(int nImageWidth, int nScale, int nImageHeight, CvHistogram *pcvHistogram)  
    23. {  
    24.     IplImage *pHistImage = cvCreateImage(cvSize(nImageWidth * nScale, nImageHeight), IPL_DEPTH_8U, 1);  
    25.     FillWhite(pHistImage);  
    26.   
    27. //统计直方图中的最大直方块  
    28. float fMaxHistValue = 0;  
    29.     cvGetMinMaxHistValue(pcvHistogram, NULL, &fMaxHistValue, NULL, NULL);  
    30.   
    31. //分别将每个直方块的值绘制到图中  
    32. int i;  
    33. for(i = 0; i < nImageWidth; i++)  
    34.     {  
    35. float fHistValue = cvQueryHistValue_1D(pcvHistogram, i); //像素为i的直方块大小  
    36. int nRealHeight = cvRound((fHistValue / fMaxHistValue) * nImageHeight);  //要绘制的高度  
    37.         cvRectangle(pHistImage,  
    38.             cvPoint(i * nScale, nImageHeight - 1),  
    39.             cvPoint((i + 1) * nScale - 1, nImageHeight - nRealHeight),  
    40.             cvScalar(i, 0, 0, 0),   
    41.             CV_FILLED  
    42.         );   
    43.     }  
    44. return pHistImage;  
    45. }  
    46. int main( int argc, char** argv )  
    47. {     
    48. const char *pstrWindowsSrcTitle = "原图()";  
    49. const char *pstrWindowsGrayTitle = "灰度图()";  
    50. const char *pstrWindowsHistTitle = "直方图()";  
    51.   
    52. // 从文件中加载原图  
    53. "007.jpg", CV_LOAD_IMAGE_UNCHANGED);  
    54.     IplImage *pGrayImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);  
    55. // 灰度图  
    56.     cvCvtColor(pSrcImage, pGrayImage, CV_BGR2GRAY);  
    57.   
    58. // 灰度直方图  
    59.     CvHistogram *pcvHistogram = CreateGrayImageHist(&pGrayImage);  
    60.       
    61. // 创建直方图图像  
    62. int nHistImageWidth = 255;  
    63. int nHistImageHeight = 150;  //直方图图像高度  
    64. int nScale = 2;              
    65.     IplImage *pHistImage = CreateHisogramImage(nHistImageWidth, nScale, nHistImageHeight, pcvHistogram);  
    66.   
    67. // 显示  
    68.     cvNamedWindow(pstrWindowsSrcTitle, CV_WINDOW_AUTOSIZE);  
    69.     cvNamedWindow(pstrWindowsGrayTitle, CV_WINDOW_AUTOSIZE);  
    70.     cvNamedWindow(pstrWindowsHistTitle, CV_WINDOW_AUTOSIZE);  
    71.     cvShowImage(pstrWindowsSrcTitle, pSrcImage);  
    72.     cvShowImage(pstrWindowsGrayTitle, pGrayImage);  
    73.     cvShowImage(pstrWindowsHistTitle, pHistImage);  
    74.   
    75.   
    76.     cvWaitKey(0);  
    77.   
    78.     cvReleaseHist(&pcvHistogram);  
    79.   
    80.     cvDestroyWindow(pstrWindowsSrcTitle);  
    81.     cvDestroyWindow(pstrWindowsGrayTitle);  
    82.     cvDestroyWindow(pstrWindowsHistTitle);  
    83.     cvReleaseImage(&pSrcImage);  
    84.     cvReleaseImage(&pGrayImage);  
    85.     cvReleaseImage(&pHistImage);  
    86. return 0;  
    87. }


    运行效果如下图所示:


    opencv 灰度值总和 opencv 灰度直方图_OpenCV

    由直方图可以看出灰度图上有四种灰度占了很大一部分比例。估计应该是墙壁,衣服,裤子及皮肤这四种灰度吧。

     

    本篇主要介绍了灰度图像的直方图,彩色图像的直方图可以参考:http://www.opencv.org.cn/index.php/%E5%9B%BE%E5%83%8F%E9%A2%9C%E8%89%B2%E5%88%86%E5%B8%83%E7%9B%B4%E6%96%B9%E5%9B%BE

     

    后面二篇《OpenCV第十篇 灰度直方图均衡化》与《OpenCV第十一篇 彩色直方图均衡化》将介绍直方图的均衡化处理,这是图像增强的常用方法。欢迎继续浏览。