一.概述
二.应用一:进行系统分析
- 1.画出统计图
- 2.确定分析数列
- 3.对变量进行预处理
- 4.计算子序列中各个指标与母序列的关联系数
- 5.求出每列平均值就是灰色关联度
- 6.通过比较三个子序列和母序列的关联度可以得到结论
- 三.讨论
- 四.用于综合评价问题
- 1.题目
- 2.过程
- 3.图像
- 4.代码
一.概述
二.应用一:进行系统分析
1.画出统计图
分析:
2.确定分析数列
3.对变量进行预处理
目的:
- 去除量纲
- 缩小变量范围简化计算 对母序列和子序列中的每个指标进行预处理:先求出每个指标的均值,在用该指标中的每个元素都除以其均值
4.计算子序列中各个指标与母序列的关联系数
a是最小的,b是最大的
然后计算出系数
5.求出每列平均值就是灰色关联度
6.通过比较三个子序列和母序列的关联度可以得到结论
该地区在2000年至2005年间的国内生产总值收到第三产业的影响最大(其灰色关联度最大)
三.讨论
- 什么时候用标准化回归,什么时候用灰色关联分析 当样本个数n较大时,一般使用标准化回归,当样本个数n较少时,才使用灰色关联分析
- 如果母序列中有多个指标,应该怎样分析?
四.用于综合评价问题
1.题目
2.过程
3.图像
4.代码
%% 灰色关联分析用于综合评价模型例题的讲解
clear;clc
load data_water_quality.mat
% 不会导入数据的同学可以看看第二讲topsis模型,我们也可以自己在工作区新建变量,并把Excel的数据粘贴过来
% 注意Matlab的当前文件夹一定要切换到有数据文件的这个文件夹内
%% 判断是否需要正向化
[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']); %1
if Judge == 1
Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
disp('请输入需要处理的这些列的指 标类型(1:极小型, 2:中间型, 3:区间型) ')
Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3]
% 注意,Position和Type是两个同维度的行向量
for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
% 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素
% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
end
disp('正向化后的矩阵 X = ')
disp(X)
end
%% 对正向化后的矩阵进行预处理
Mean = mean(X); % 求出每一列的均值以供后续的数据预处理
Z = X ./ repmat(Mean,size(X,1),1);
disp('预处理后的矩阵为:'); disp(Z)
%% 构造母序列和子序列
Y = max(Z,[],2); % 母序列为虚拟的,用每一行的最大值构成的列向量表示母序列
X = Z; % 子序列就是预处理后的数据矩阵
%% 计算得分
absX0_Xi = abs(X - repmat(Y,1,size(X,2))) % 计算|X0-Xi|矩阵
a = min(min(absX0_Xi)) % 计算两级最小差a
b = max(max(absX0_Xi)) % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi + rho*b) % 计算子序列中各个指标与母序列的关联系数
weight = mean(gamma) / sum(mean(gamma)); % 利用子序列中各个指标的灰色关联度计算权重
score = sum(X .* repmat(weight,size(X,1),1),2); % 未归一化的得分
stand_S = score / sum(score); % 归一化后的得分
[sorted_S,index] = sort(stand_S ,'descend') % 进行排序
Inter2Max
function [posit_x] = Inter2Max(x,a,b)
r_x = size(x,1); % row of x
M = max([a-min(x),max(x)-b]);
posit_x = zeros(r_x,1); %zeros函数用法: zeros(3) zeros(3,1) ones(3)
% 初始化posit_x全为0 初始化的目的是节省处理时间
for i = 1: r_x
if x(i) < a
posit_x(i) = 1-(a-x(i))/M;
elseif x(i) > b
posit_x(i) = 1-(x(i)-b)/M;
else
posit_x(i) = 1;
end
end
end
Mid2Max
function [posit_x] = Mid2Max(x,best)
M = max(abs(x-best));
posit_x = 1 - abs(x-best) / M;
end
Min2Max
function [posit_x] = Min2Max(x)
posit_x = max(x) - x;
%posit_x = 1 ./ x; %如果x全部都大于0,也可以这样正向化
end
Positivization
% function [输出变量] = 函数名称(输入变量)
% 函数的中间部分都是函数体
% 函数的最后要用end结尾
% 输出变量和输入变量可以有多个,用逗号隔开
% function [a,b,c]=test(d,e,f)
% a=d+e;
% b=e+f;
% c=f+d;
% end
% 自定义的函数要单独放在一个m文件中,不可以直接放在主函数里面(和其他大多数语言不同)
function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
if type == 1 %极小型
disp(['第' num2str(i) '列是极小型,正在正向化'] )
posit_x = Min2Max(x); %调用Min2Max函数来正向化
disp(['第' num2str(i) '列极小型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
elseif type == 2 %中间型
disp(['第' num2str(i) '列是中间型'] )
best = input('请输入最佳的那一个值: ');
posit_x = Mid2Max(x,best);
disp(['第' num2str(i) '列中间型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
elseif type == 3 %区间型
disp(['第' num2str(i) '列是区间型'] )
a = input('请输入区间的下界: ');
b = input('请输入区间的上界: ');
posit_x = Inter2Max(x,a,b);
disp(['第' num2str(i) '列区间型正向化处理完成'] )
disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
else
disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
end
end