文章目录
- 1、导入需要的库
- 2、导入数据集
- 2.1 读入文件夹中的图片
- 2.2 初始化导入的图片
- 2.3 构建数据集对象
- 3、构建DCGAN网络
- 3.1 建立生成器
- 3.2 建立判别器
- 3.3 实例化判别器和生成器
- 4、建立损失函数
- 4.1 生成器损失函数
- 4.2 判别器损失函数
- 5、初始化优化器
- 6、定义梯度下降过程
- 7、将生成的多张图像放到一个图里并保存
- 8、训练
1、导入需要的库
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import glob
from PIL import Image
image_size = 64
SHUFFLE_SIZE = 1000
batch_size = 64
z_dim = 100 # 隐藏向量z的长度
img_shape = (image_size, image_size, 3)
2、导入数据集
2.1 读入文件夹中的图片
PATH = '.\\faces/'
X_train = tf.data.Dataset.list_files(PATH+'*.jpg')
img_path = glob.glob(r'.\faces\*.jpg')
print('images num:', len(img_path))
images num: 51223
2.2 初始化导入的图片
def load(image_file):
image = tf.io.read_file(image_file)
image = tf.image.decode_jpeg(image)
image = tf.cast(image, tf.float32)
image = tf.image.resize(image, [image_size, image_size])
image = (image - 127.5) / 127.5
return image
2.3 构建数据集对象
dataset = X_train.map(
load, num_parallel_calls=tf.data.experimental.AUTOTUNE).cache().shuffle(
SHUFFLE_SIZE).batch(batch_size).repeat(100)
3、构建DCGAN网络
3.1 建立生成器
class Generator(tf.keras.Model):
def __init__(self):
super(Generator, self).__init__()
filter = 64
# 转置卷积层1,输出channel为filter*8,核大小4,步长1,不使用padding,不使用偏置
self.conv1 = layers.Conv2DTranspose(filter*8, 4,1, 'valid', use_bias=False)
self.bn1 = layers.BatchNormalization()
# 转置卷积层2
self.conv2 = layers.Conv2DTranspose(filter*4, 4,2, 'same', use_bias=False)
self.bn2 = layers.BatchNormalization()
# 转置卷积层3
self.conv3 = layers.Conv2DTranspose(filter*2, 4,2, 'same', use_bias=False)
self.bn3 = layers.BatchNormalization()
# 转置卷积层4
self.conv4 = layers.Conv2DTranspose(filter*1, 4,2, 'same', use_bias=False)
self.bn4 = layers.BatchNormalization()
# 转置卷积层5
self.conv5 = layers.Conv2DTranspose(3, 4,2, 'same', use_bias=False)
def call(self, inputs, training=None):
x = inputs # [z, 100]
# Reshape乘4D张量,方便后续转置卷积运算:(b, 1, 1, 100)
x = tf.reshape(x, (x.shape[0], 1, 1, x.shape[1]))
x = tf.nn.relu(x) # 激活函数
# 转置卷积-BN-激活函数:(b, 4, 4, 512)
x = tf.nn.relu(self.bn1(self.conv1(x), training=training))
# 转置卷积-BN-激活函数:(b, 8, 8, 256)
x = tf.nn.relu(self.bn2(self.conv2(x), training=training))
# 转置卷积-BN-激活函数:(b, 16, 16, 128)
x = tf.nn.relu(self.bn3(self.conv3(x), training=training))
# 转置卷积-BN-激活函数:(b, 32, 32, 64)
x = tf.nn.relu(self.bn4(self.conv4(x), training=training))
# 转置卷积-激活函数:(b, 64, 64, 3)
x = self.conv5(x)
x = tf.tanh(x) # 输出x范围0~1,与预处理一致
return x
3.2 建立判别器
class Discriminator(tf.keras.Model):
# 判别器
def __init__(self):
super(Discriminator, self).__init__()
filter = 64
# 卷积层
self.conv1 = layers.Conv2D(filter, 4, 2, 'valid', use_bias=False)
self.bn1 = layers.BatchNormalization()
# 卷积层
self.conv2 = layers.Conv2D(filter*2, 4, 2, 'valid', use_bias=False)
self.bn2 = layers.BatchNormalization()
# 卷积层
self.conv3 = layers.Conv2D(filter*4, 4, 2, 'valid', use_bias=False)
self.bn3 = layers.BatchNormalization()
# 卷积层
self.conv4 = layers.Conv2D(filter*8, 3, 1, 'valid', use_bias=False)
self.bn4 = layers.BatchNormalization()
# 卷积层
self.conv5 = layers.Conv2D(filter*16, 3, 1, 'valid', use_bias=False)
self.bn5 = layers.BatchNormalization()
# 全局池化层
self.pool = layers.GlobalAveragePooling2D()
# 特征打平
self.flatten = layers.Flatten()
# 2分类全连接层
self.fc = layers.Dense(1)
def call(self, inputs, training=None):
# 卷积-BN-激活函数:(4, 31, 31, 64)
x = tf.nn.leaky_relu(self.bn1(self.conv1(inputs), training=training))
# 卷积-BN-激活函数:(4, 14, 14, 128)
x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
# 卷积-BN-激活函数:(4, 6, 6, 256)
x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))
# 卷积-BN-激活函数:(4, 4, 4, 512)
x = tf.nn.leaky_relu(self.bn4(self.conv4(x), training=training))
# 卷积-BN-激活函数:(4, 2, 2, 1024)
x = tf.nn.leaky_relu(self.bn5(self.conv5(x), training=training))
# 卷积-BN-激活函数:(4, 1024)
x = self.pool(x)
# 打平
x = self.flatten(x)
# 输出,[b, 1024] => [b, 1]
logits = self.fc(x)
return logits
3.3 实例化判别器和生成器
generator = Generator() # 创建生成器
generator.build(input_shape = (4, z_dim))
discriminator = Discriminator() # 创建判别器
discriminator.build(input_shape=(4, 64, 64, 3))
其中input_shape 的第一个维度其实随便设一个数就可以,但是用None 会报错,不知道为什么……
4、建立损失函数
4.1 生成器损失函数
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def g_loss_fn(d_fake_logits):
# 计算生成图片与1之间的误差
loss = tf.reduce_mean(loss_object(tf.ones_like(d_fake_logits), d_fake_logits))
return loss
4.2 判别器损失函数
def d_loss_fn(d_real_logits, d_fake_logits):
# 真实图片与1之间的误差
d_loss_real = tf.reduce_mean(loss_object(tf.ones_like(d_real_logits), d_real_logits))
# 生成图片与0之间的误差
d_loss_fake = tf.reduce_mean(loss_object(tf.zeros_like(d_fake_logits), d_fake_logits))
# 合并误差
loss = d_loss_fake + d_loss_real
return loss
5、初始化优化器
# 分别为生成器和判别器创建优化器
learning_rate = 0.0002
g_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)
d_optimizer = keras.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)
6、定义梯度下降过程
def train_step(batch_x):
# 采样隐藏向量
batch_z = tf.random.normal([batch_size, z_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
# 采样生成图片
fake_image = generator(batch_z, training=True)
# 判定生成图片
d_fake_logits = discriminator(fake_image, training=True)
# 判定真实图片
d_real_logits = discriminator(batch_x, training=True)
d_loss = d_loss_fn(d_real_logits, d_fake_logits)
g_loss = g_loss_fn(d_fake_logits)
grads_d = disc_tape.gradient(d_loss, discriminator.trainable_variables)
grads_g = gen_tape.gradient(g_loss, generator.trainable_variables)
d_optimizer.apply_gradients(zip(grads_d, discriminator.trainable_variables))
g_optimizer.apply_gradients(zip(grads_g, generator.trainable_variables))
return d_loss, g_loss
注意,要将所有关于生成器、判别器的操作都放在梯度带中。
7、将生成的多张图像放到一个图里并保存
def save_result(val_out, val_block_size, image_path, color_mode):
preprocesed = ((val_out + 1.0) * 127.5).astype(np.uint8)
final_image = np.array([])
single_row = np.array([])
for b in range(val_out.shape[0]):
# concat image into a row
if single_row.size == 0:
single_row = preprocesed[b, :, :, :]
else:
single_row = np.concatenate((single_row, preprocesed[b, :, :, :]), axis=1)
# concat image row to final_image
if (b+1) % val_block_size == 0:
if final_image.size == 0:
final_image = single_row
else:
final_image = np.concatenate((final_image, single_row), axis=0)
# reset single row
single_row = np.array([])
Image.fromarray(final_image).save(image_path)
8、训练
for n, data in dataset.enumerate():
d_loss, g_loss = train_step(data)
print('.', end='')
if n % 100 == 0:
print()
print(n.numpy(), 'd-loss:',float(d_loss), 'g-loss:', float(g_loss))
# 可视化
z = tf.random.normal([100, z_dim])
fake_image = generator(z, training=False)
img_path = os.path.join('gan_images', 'gan-%d.png'%n)
save_result(fake_image.numpy(), 10, img_path, color_mode='P')