【题目描述】

Given an integer array, heapify it into a min-heap array.

For a heap array A, A[0] is the root of heap, and for each A[i], A[i * 2 + 1] is the left child of A[i] and A[i * 2 + 2] is the right child of A[i].

给出一个整数数组,堆化操作就是把它变成一个最小堆数组。

对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[i]的右儿子。

【题目链接】

www.lintcode.com/en/problem/heapify/

【题目解析】

Heapify一个Array,也就是对array中的元素进行siftup或者siftdown的操作。根据min heap定义进行操作即可。

这里值得注意的是,对于扫描整个array的情况下,siftup和siftdown有complexity上的区别。

基本的原因在于:siftdown的complexity,实质上是node相对于bottom移动的次数,而根据binary heap本身的特性,决定了约靠近bottom的node越多;相对照的是siftup,是node相对于root节点的移动次数。

如果Heapify可以用O(n)实现,那么HeapSort所需的时间复杂度为何是O(nlogn)?因为HeapSort其实包含了两个步骤,第一步,Heapify,build (min) heap,所需时间复杂度O(n),第二步,依次删除最小值(min heap),对于Heap来说,删除操作的复杂度是O(logn), 而这个删除需要执行O(n),来得到最终sort的结果,于是总体时间复杂度是O(nlogn)。

【参考答案】

www.jiuzhang.com/solutions/heapify/