1.原理:cpu消耗过大通常情况下都是有慢sql造成的,这里的慢sql包括全表扫描,扫描数据量过大,内存排序,磁盘排序,锁争用等待等;

   2.表现现象sql执行状态为:sending data,Copying to tmp table,Copying to tmp table on disk,Sorting result,locked;

   3.解决方法:用户可以登录到rds,通过show processlist查看当前正在执行的sql,当执行完show processlist后出现大量的语句,通常其状态出现sending data,Copying to tmp table,Copying to tmp table on disk,Sorting result, Using filesort 都是sql有性能问题;

   A.sending data表示:sql正在从表中查询数据,如果查询条件没有适当的索引,则会导致sql执行时间过长;

   B.Copying to tmp table on disk:出现这种状态,通常情况下是由于临时结果集太大,超过了数据库规定的临时内存大小,需要拷贝临时结果集到磁盘上,这个时候需要用户对sql进行优化;

   C.Sorting result, Using filesort:出现这种状态,表示sql正在执行排序操作,排序操作都会引起较多的cpu消耗,通常的优化方法会添加适当的索引来消除排序,或者缩小排序的结果集;

   通过show processlist发现如下sql:

   Sql A.


| 2815961 | sanwenba  | 10.241.142.197:55190 | sanwenba | Query   | 0 | Sorting RESULT       | 
SELECT z.aid,z.subject FROM www_zuowen z RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid 
ORDER BY za.viewnum DESC LIMIT 10;


   性能sql:


SELECT z.aid,z.subject FROM www_zuowen z RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid
 ORDER BY za.viewnum DESC LIMIT 10;


   用explain 查看执行计划:


sanwenba@3018 10:00:54>explain SELECT z.aid,z.subject FROM www_zuowen z 
RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid ORDER BY za.viewnum DESC LIMIT 10;
 
+----+-------------+-------+--------+---------------+---------+---------+-----------------+------
 
| id | select_type | TABLE | TYPE   | possible_keys | KEY     | key_len | REF     | ROWS   | Extra |
 
+----+-------------+-------+--------+---------------+---------+---------+-----------------+------
 
|  1 | SIMPLE      | za    | INDEX  | NULL          | viewnum | 6       | NULL            | 537029 | USING INDEX; USING filesort |
 
|  1 | SIMPLE      | z     | eq_ref | PRIMARY       | PRIMARY | 3       | sanwenba.za.aid |      1 |  |


   添加适当索引消除排序:


sanwenba@3018 10:02:33 ALTER TABLE www_zuowenaddviews ADD INDEX ind_www_zuowenaddviews_viewnum(viewnum);
sanwenba@3018 10:03:27explain SELECT z.aid,z.subject FROM www_zuowen z RIGHT JOIN www_zuowenaddviews za ON za.aid=z.aid ORDER BY za.viewnum DESC LIMIT 10;
+----+-------------+-------+--------+---------------+--------------------------------+---------+-
 
| id | select_type | TABLE | TYPE   | possible_keys | KEY  | key_len | REF      | ROWS | Extra       |
 
+----+-------------+-------+--------+---------------+--------------------------------+---------+-
 
|  1 | SIMPLE      | za    | INDEX  | NULL  | ind_www_zuowenaddviews_viewnum | 3       | NULL       |   10 | USING INDEX |
 
|  1 | SIMPLE    | z     | eq_ref | PRIMARY PRIMARY | 3  | sanwenba.za.aid |    1 |             |
 
+----+-------------+-------+--------+---------------+--------------------------------+---------+-


   Sql B:


| 2825321 | netzuowen | 10.200.120.41:44172  | netzuowen | Query |     2 | Copying TO tmp TABLE ON disk 
SELECT * FROM `www_article` WHERE 1=1 ORDER BY rand() LIMIT 0,30


   这种sql order by rand()同样也会出现排序;


netzuowen@3018 10:23:55
EXPLAIN  SELECT * FROM `www_zuowensearch` WHERE checked = 1 ORDER BY rand() LIMIT 0,10 ;
+----+-------------+------------------+------+---------------+--------+---------+-------+------+
 
| id | select_type | TABLE            | TYPE | possible_keys | KEY    | key_len | REF   | ROWS | Extra|
 
+----+-------------+------------------+------+---------------+--------+---------+-------+------+
 
|  1 | SIMPLE      | www_zuowensearch | REF  | newest        | newest | 1       | const | 1443 | USING TEMPORARY; USING filesort |
 
+----+-------------+------------------+------+---------------+--------+---------+-------+------+


   这种随机抽取一批记录的做法性能是很差的,表中的数据量越大,性能就越差:

   解决方法如下:    

   第一种方案,即原始的 Order By Rand() 方法:

$sql=”SELECT * FROM content ORDER BY rand() LIMIT 12″;
    $result=mysql_query($sql,$conn);
    $n=1;
    $rnds=”;
    while($row=mysql_fetch_array($result)){
    $rnds=$rnds.$n.”. <a href=’show”.$row['id'].”-”.strtolower(trim($row['title'])).”‘>”.$row['title'].”</a><br />\n”;
    $n++;
    }

   3万条数据查12条随机记录,需要0.125秒,随着数据量的增大,效率越来越低。

   第二种方案,改进后的 JOIN 方法:

for($n=1;$n<=12;$n++){
    $sql=”SELECT * FROM `content` AS t1
    JOIN (SELECT ROUND(RAND() * (SELECT MAX(id) FROM `content`)) AS id) AS t2
    WHERE t1.id >= t2.id ORDER BY t1.id ASC LIMIT 1″;
    $result=mysql_query($sql,$conn);
    $yi=mysql_fetch_array($result);
    $rnds = $rnds.$n.”. <a href=’show”.$yi['id'].”-”.strtolower(trim($yi['title'])).”‘>”.$yi['title'].”</a><br />\n”;
    }

   3万条数据查12条随机记录,需要0.004秒,效率大幅提升,比第一种方案提升了约30倍。缺点:多次select查询,IO开销大。

   第三种方案,SQL语句先随机好ID序列,用 IN 查询(飘易推荐这个用法,IO开销小,速度最快):

$sql=”SELECT MAX(id),MIN(id) FROM content”;
    $result=mysql_query($sql,$conn);
    $yi=mysql_fetch_array($result);
    $idmax=$yi[0];
    $idmin=$yi[1];
    $idlist=”;
    for($i=1;$i<=20;$i++){
    if($i==1){ $idlist=mt_rand($idmin,$idmax); }
    else{ $idlist=$idlist.’,’.mt_rand($idmin,$idmax); }
    }
    $idlist2=”id,”.$idlist;
    $sql=”select * from content where id in ($idlist) order by field($idlist2) LIMIT 0,12″;
    $result=mysql_query($sql,$conn);
    $n=1;
    $rnds=”;
    while($row=mysql_fetch_array($result)){
    $rnds=$rnds.$n.”. <a href=’show”.$row['id'].”-”.strtolower(trim($row['title'])).”‘>”.$row['title'].”</a><br />\n”;
    $n++;
    }

   3万条数据查12条随机记录,需要0.001秒,效率比第二种方法又提升了4倍左右,比第一种方法提升120倍。注,这里使用了 order by field($idlist2) 是为了不排序,否则 IN 是自动会排序的。缺点:有可能遇到ID被删除的情况,所以需要多选几个ID。

   C.出现sending data的情况:


| 2833185 | sanwenba        | 10.241.91.81:45964   | sanwenba | Query    |     1 | Sending DATA   |
 SELECT * FROM `www_article` WHERE CONCAT(subject,description) LIKE '%??%' ORDER BY aid DESC LIMIT 75,15


   性能sql:

   SELECT * FROM `www_article` WHERE CONCAT(subject,description) like ’%??%’ ORDER BY aid desc LIMIT 75,15

   这种sql是典型的sql分页写法不规范的情况,需要将sql进行改写:


SELECT * FROM www_article t1,(SELECT aid FROM www_article WHERE CONCAT(subject,description) LIKE '%??%' ORDER BY aid DESC LIMIT 75,15) t2 WHERE t1.aid=t2.aid;


   注意这里的索引需要改用覆盖索引:aid+ subject+description

   优化后的结果:

   

   总结:

   

      Sql优化是性能优化的最后一步,虽然位于塔顶,他最直影响用户的使用,但也是最容易优化的步骤,往往效果最直接。

      RDS-mysql由于有资源的隔离,不同的实例规格拥有的iops能力不同,比如新1型提供的iops为150个,也就是每秒能够提供150次的随机磁盘io操作,所以如果用户的数据量很大,内存很小,由于iops的限制,一条慢sql就很有可能消耗掉所有的io资源,而影响其他的sql查询,对于数据库来说就是所有的sql需要执行很长的时间才能返回结果,对于应用来说就会造成整体响应的变慢;所以优化永不止境,既可以帮助你的系统稳定,同时又可以节约你的成本,何乐不为。