1.dataframe用时间分组细节,如果索引是时间类型,那么,可以用下面的代码指定分组的时间段
agg_10m = df.groupby(pd.TimeGrouper(freq='10Min')).aggregate(numpy.sum)
这样的话就不用再自己处理索引数据了。
2.今天又搜了一下画动态图的库,我想展示动态图,把数据“播放”出来,plotly.express是支持动态图的,但是有很多限制,而且只绘制当前状态,总之看起来很奇怪,另一个是pandas_alive,但是因为库版本冲突没有安装成功。它展示的是短视频里看到的那种条形图的排名,然后有那种过渡动画的那种,以后再研究。第三个是matplotlib,这个成熟的绘图库功能还是很强大的。其实bokeh也是支持的,之前看过文档,但是没有做实验。还有一个就是pyecharts,看效果还行,但不是我想要的。
import plotly.express as px
import numpy as np
from datetime import datetime
import time
from pandas.core import resample as rp
def convert_time(df,d):
try:
date_str = d + " 00:00:00"
struct_time = time.strptime(date_str, '%Y-%m-%d %H:%M:%S')
timesamp = time.mktime(struct_time)
res = timesamp + df
d = datetime.fromtimestamp(res)
year = d.year
month = d.month
day = d.day
hour = d.hour
minute = d.minute
return str(datetime(year, month, day, hour, minute))
except:
return df
df = MDF("C:\\Users\\gw00305123\\Desktop\\下载\\AnalysisTools\\A样耐久稳态工况_3th cycle_2022-06-24 11-05-13.MDF").to_dataframe()
date_str = '2022-06-24'
df['myindex'] = np.arange(0,df.shape[0])
n_list = [
'sAPT12_CatIn_pAir_kPa',
'spABPV_CatIn_pAir_kPa',
'sABPG_ABPV_posVlv_perc',
'csABPV_posVlv_perc',
'sAFMM_AcIn_mdotAir_gps',
'spAC_CatIn_mdotAir_gps',
'FeedbackSpeed',
'csAC_nMotor_rpm',
'sFPT12_AnIn_pHy_kPa',
'spFIV_AnIn_pHy_kPa',
'csFIV_DutCy_perc',
'FRB_Speed',
'csFRB_Spd_rpm',
'sCTE12_StkIn_tClt_dC',
'sCTE21_StkOut_tClt_dC',
'sCWP_nMotor_rpm',
'sCPT21_StkOut_pClt_kPa',
'sFPT21_AnOut_pHy_kPa',
'sCPT12_StkIn_pClt_kPa',
'sCVM_uMeanCell_V',
'sCVM_uMinCell_V',
'sCVM_uMeanCell_V',
'sCVM_uMinCell_V',
'sPDU_StkOut_iSTK_A',
'myindex',
]
df = df.loc[:,n_list]
df.reset_index(inplace=True)
if 'Time' not in df and 'timestamps' in df:
df['Time'] = df['timestamps'].apply(convert_time,args=([date_str]))
#df = df.set_index('Time')
#group = df.groupby(rp.TimeGrouper(freq='10Min'))
df = df.dropna()
#df = df.iloc[10000:11000,:]
px.bar(df, y='sFPT21_AnOut_pHy_kPa',animation_frame='Time',animation_group='Time',color='Time',range_x=[0,50000],range_y=[0,500])
这个是我研究时的代码,画出的图很奇怪,还没能达到要求。
matplotlib案例
# 导入库函数
import random
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.animation as animation
from IPython.display import HTML
import matplotlib
#防止动漫内存太大,报错
matplotlib.rcParams['animation.embed_limit'] = 2**128
#pandas读取数据,且去列名分别为name,group,year和value的值;
url = 'https://gist.githubusercontent.com/johnburnmurdoch/4199dbe55095c3e13de8d5b2e5e5307a/raw/fa018b25c24b7b5f47fd0568937ff6c04e384786/city_populations'
df = pd.read_csv(url, usecols=['name', 'group', 'year', 'value'])
df.head()
#导入random函数,randomcolor用于生成颜色代码
# randomcolor生成颜色代码原理,
# 【1-9/A-F】15个数字随机组合成6位字符串前面再加上一个“#”号键
import random
def randomcolor():
colorlist = ['1','2','3','4','5','6','7','8','9','A','B','C','D','E','F']
color =''
for i in range(6):
color += random.choice(colorlist)
return '#'+ color
#对地区列表进行去重,分类;
area_list1 = set(df['name'])
# color_list用于存放随机生成颜色代码个数
# 因为后面区域个数 要与颜色个数保持一致,这里用了len函数;
color_list =[]
for i in range(len(area_list1)):
str_1 = randomcolor()
color_list.append(str_1)
str_1 = randomcolor()
#area_list转化为列表
area_list_1 = [i for i in area_list1]
print(color_list)
print(area_list_1)
#colors表示 所在城市:颜色 一一对应字典形式;
colors =dict(zip(area_list_1,color_list))
print(colors)
#group_lk为 城市:所在区域 --对应字典形式;
group_lk = df.set_index('name')['group'].to_dict()
print(group_lk)
# 用plt加理图表,figsize表示图标长宽,ax表示标签
fig, ax = plt.subplots(figsize=(15, 8))
#dras_barchart生成current_year这一年各城市人口基本情况;
def draw_barchart(current_year):
#dff对year==current_year的行,以value从升序方式排序,取后十名也就是最大值;
dff = df[df['year'].eq(current_year)].sort_values(by='value',ascending = True).tail(12)
# 所有坐标、标签清除
ax.clear()
#显示颜色、城市名字
ax.barh(dff['name'],dff['value'],color = [colors[x] for x in dff['name']])
dx = dff['value'].max()/200
#ax.text(x,y,name,font,va,ha)
# x,y表示位置;
# name表示显示文本;
# va,ba分别表示水平位置,垂直放置位置;
for i ,(value,name) in enumerate(zip(dff['value'], dff['name'])):
ax.text(value-dx,i,name,size=14,weight=600,ha ='right',va = 'bottom')
ax.text(value-dx,i-.25,group_lk[name],size = 10,color ='#444444',ha ='right',va = 'baseline')
ax.text(value+dx,i ,f'{value:,.0f}',size = 14,ha = 'left',va ='center')
#ax.transAxes表示轴坐标系,(1,0.4)表示放置位置
ax.text(1,0.4,current_year,transform = ax.transAxes,color ='#777777',size = 46,ha ='right',weight=800)
ax.text(0,1.06,'Population (throusands)',transform = ax.transAxes,size=12,color='#777777')
#set_major_formatter表示刻度尺格式;
ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
ax.xaxis.set_ticks_position('top')
ax.tick_params(axis='x',colors='#777777',labelsize=12)
ax.set_yticks([])
#margins表示自动缩放余额;
ax.margins(0,0.01)
# 设置后面的网格
ax.grid(which='major',axis='x',linestyle='-')
#刻度线和网格线是在图标上方还是下方,True为下方
ax.set_axisbelow(True)
ax.text(0,1.15,'The most population cities in the word from 1500 to 2018',
transform=ax.transAxes,size=24,weight=600,ha='left',va='top')
ax.text(1,0,'by@zeroing1',transform = ax.transAxes,color ='#777777',ha = 'right',
bbox = dict(facecolor='white',alpha = 0.8,edgecolor='white'))
#取消图表周围的方框显示
plt.box(False)
#绘制2018年各城市人口情况
draw_barchart(2018)