最近在做毕业设计,需要收集用户的评分数据做协同过滤算法,同时收集评论数据做情感分析
坑点
- 豆瓣图书可以没有评分,或者用户评论了但没给评分。而且豆瓣图书的编码方式很无奈呀,热门书籍附近总是冷门书籍,无评分、无评论那种,所以经常输出failed
- 不能爬得太快了,每分钟只能40-50张页面,一个requests只能访问一千次,否则就报状态码403
fake_useragent的用法
在这次爬虫中使用了fake_useragent来伪造请求头,因为听说豆瓣的反爬机制比较好
fake_useragent的用法简单如下,random是随机产生一个请求头
from fake_useragent import UserAgent
import requests
ua=UserAgent()
url="https://www.baidu.com" #请求的网址
headers={"User-Agent":ua.random} #请求头
response=requests.get(url=url,headers=headers) #请求网址
print(headers)
print(response.status_code) #响应状态信息
text = response.headers
for line in text.items():
print(line)
爬取豆瓣读书的图书信息和评论信息
首先需要观察的是这些的链接
https://book.douban.com/subject/26953606/ 图书信息页面
https://book.douban.com/subject/26953606/comments/ 第一页评论页面
https://book.douban.com/subject/26953606/comments/hot?p=2 第二页评论页面
可以看到前面都是相同的https://book.douban.com/subject/再加一个图书id,评论页面后面接一个/comments/,第二页评论后面接一个hot?p=2,由此递推低3页是hot?p=3
其中一些写入文本的操作,因为我是要收集数据的
第二天又修改了一下,热门图书的分布实在是太稀疏了,所以在程序里先判断评论总数是否超过一千,如果超过一千条就继续爬取,否则continue
又改bug了,是数字的,写入文件一定要将其转换成str
#coding=utf-8
#下载豆瓣图书的评分、评论,需要建立四张表。auther:wuyou
#表一:图书ID,图书名,平均分
#表二:用户ID,用户名
#表三:图书ID,热门评论
#表四:用户ID,图书ID,评分,评分时间
import requests
import time
import random
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
ua = UserAgent()
header = {
'User-Agent': ua.random
}
def get_score(book_id,text): #获取(图书ID,图书名,图书评分)
soup = BeautifulSoup(text,'lxml')
try:
book_name = soup.select("#wrapper > h1 > span") #返回书名的列表
name = book_name[0].string
book_score = soup.select("#interest_sectl > div > div.rating_self.clearfix > strong") #返回分数的列表
score = book_score[0].string
#print("book name is " + str(name)+" and score is "+str(score)) 打印书名和分数
line = str(book_id) + "," + name + "," + str(score) + "\n" #拼接图书信息
with open("BookInfo.txt","a",encoding="utf-8") as file: #表一:图书ID,图书名,平均分
file.write(line)
file.close()
except:
print("book " + str(book_id) + "get score is failed!")
def write_txt(soup,book_id): #参与为url,图书id,和网页页码
try: #为了防止报错,因为有些人可以不打分,那么在user_info下只有一个span
comment_list = soup.find_all("span","short") #找到评论所在的区域
comments = ""
flag = 0
for line in comment_list: #把逗号全部替换成分号
bc = line.string
bc = bc.replace(",","。") #将英文逗号替换成句号
bc = bc.replace(",","。") #将中文逗号替换成句号
bc = bc .replace(";","。") #将分号替换成句号
if flag == 0: #如果是第一条评论
flag += 1
else:
comments += ";" #评论之间用分号间隔
comments += bc
with open("BookComments.txt","a",encoding="utf-8") as file: #表三:图书ID,热门评论
BookComments = str(book_id) + "," +comments + "\n"
file.write(BookComments)
file.close()
user_list = soup.find_all("span", "comment-info") #找到用户和评分的所在区域
user_info_txt = open("UserInfo.txt","a",encoding="utf-8")
user_score_txt = open("UserScore.txt","a",encoding="utf-8")
for user_info in user_list:
user_name = user_info.find("a").string #用户姓名所在的<a></a>
user_url = user_info.find("a").attrs["href"] #提取出超链接
user_id = user_url.split("/")[-2] #提取出用户id
score = user_info.find_all("span")[0].attrs["title"] #找到用户评分的区域,得到分数
time_info = user_info.find_all("span")[1].string #提取出评分的时间
time_info = time_info.split("-")
score_year = time_info[0] #截取出评论时间的年份
user_info_txt.write(user_id + "," +user_name + "\n") #表二:用户ID,用户名
user_score_txt.write(user_id + "," + str(book_id) + "," + score + "," + str(score_year) + "\n") #表四:用户ID,图书ID,评分,评分时间
#print("book_id is " + book_id +" user name is " + user_name + ",id is " + user_id + ",score is " + score_info + " " + time_info) 打印出一系列信息
user_info_txt.close()
user_score_txt.close()
except:
print("cannot find!")
def get_comments(soup, comment_url, book_id, page): #获取(图书ID,图书评论),(图书ID,用户ID,用户评分),(用户ID,用户名)
while page <= 2: #爬取的页数
if int(page) == 1: #如果是第一页
write_txt(soup, book_id) #传入超链接
page += 1 #页数加一
else:
comment_url += "hot?p=" + str(page) #拼合链接
time.sleep(random.uniform(3,6))
html = requests.get(url=comment_url,headers=header)
if html.status_code == 200:
comment_text = html.text
soup = BeautifulSoup(comment_text,"lxml")
write_txt(soup, book_id) #传入网页内容
page += 1 #页数加一
#https://book.douban.com/subject/1007305/
if __name__ == '__main__':
url="https://book.douban.com/subject/"
startID=1007304 #起始的图书ID
st = 0 #循环的起点
lens=20000 #len=20000时,需要爬取的总书籍数
while st < lens: #设置st和lens是为了爬取热门书籍
if startID-1007304 >=1000:
print("stop! " + startID)
break
try:
startID += 1 #图书id增长
score_url = url + str(startID) + "/" #图书信息的链接地址
html = requests.get(url=score_url,headers=header)
html.encoding = "utf-8"
time.sleep(random.uniform(3, 6)) # 暂停几秒,随机数在2-4s之间
if html.status_code == 200:
comment_url = score_url + "comments/" # 评论的链接地址
comment_html = requests.get(url=comment_url, headers=header).text
time.sleep(random.uniform(3, 6)) # 暂停几秒,随机数在2-4s之间
soup = BeautifulSoup(comment_html, "lxml")
total_comments = soup.select("#total-comments")[0].string
comment_num = total_comments.replace("全部共 ","")
comment_num = comment_num.replace(" 条","")
if int(comment_num) >= 1000:
st +=1
print(str(startID)+" is success!" + score_url + " comment_num is " + comment_num)
text = html.text
get_score(startID,text)
get_comments(soup,comment_url,startID,1) #获取评论信息
else:
print(score_url + " is failed!" + " comment_num is " + comment_num)
else:
print(str(startID)+" is failed!")
except:
print(str(startID) + " is failed!",end='')
print(html.status_code)
输出如下(这是以前有输出语句时的代码的输出)
中间一堆数据省略了
这是爬取到了一些冷门书籍,评论数少得可怜,所以直接忽略了