首先介绍一下A*算法:
https://blog.csdn.net/qq_40061421/article/details/81915573
然后是康托展开:
https://blog.csdn.net/qq_40061421/article/details/81915838
A*:f=g+h函数。g表示从起点到当前点的移动步数,h表示对当前点到目标点的最小移动步数的预测。除去起点和目标点,我们走在任意一点上的时候,下一步很容易想到应该选择f较小的继续。(对于h的计算我们可以用曼哈顿距离公式)
康托展开:这道题里面的作用在于实施hash函数,对于当前这一步后得到一个新的矩阵,用康托展开公式计算这个矩阵的hash值,用在宽搜时判断。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#define inf 0x7fffffff
using namespace std;
const int maxn = 10;
const int M = 400000 + 10;
struct node
{
int mase[3][3];
int x, y;//存储x的位置
int f, g, h;//A*的三个参数
int flag;
friend bool operator < (node a, node b)
{
return a.f > b.f;
}
}start, tail;
int pre[M], v[M];
char str[4] = { 'u','d','l','r' };
int Can[10] = { 1,1,2,6,24,120,720,5040,40320 };//阶乘结果
const int destination = 46234;//最终结果的康托展开值
int Cantor(node cur) ///康托展开
{
int an[10], k = 0;
for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
an[k++] = cur.mase[i][j];
int sum = 0;
for (int i = 0; i<9; i++)
{
int k = 0;
for (int j = i + 1; j<9; j++)
if (an[i]>an[j]) k++;
sum += k*Can[9 - i - 1];
}
return sum + 1;
}
int is_ok(node an) //判断此时奇偶性
{
//判断当前矩阵是否可以达到目标矩阵(矩阵里两个数实施交换后,逆序数的奇偶性和目标矩阵一致才可以有机会达到目标矩阵)
int a[10], k = 0;
for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
a[k++] = an.mase[i][j];
int sum = 0;
for (int i = 0; i<k; i++)
if (a[i] != 0)
for (int j = 0; j<i; j++)
if (a[j] != 0 && a[j]>a[i])
sum++;
if (sum & 1) //奇数
return 0;
return 1;//偶数符合
}
void print(node cur)
{
string ans;
int sum = destination;
while (pre[sum] != -1)
{
switch (v[sum]) {
case 0: ans += str[0]; break;
case 1: ans += str[1]; break;
case 2: ans += str[2]; break;
case 3: ans += str[3]; break;
}
sum = pre[sum];
}
int len = ans.size();
for (int i = len - 1; i >= 0; i--) putchar(ans[i]);
return;
}
pair<int, int> pii[10];
int getH(node cur)
{
int r = 0, c = 0;
for (int i = 1; i <= 9; i++)
{
pii[i % 9].first = r;
pii[i % 9].second = c;
c++;
if (c == 3)
{
r++;
c = 0;
}//每个里存储横纵坐标
}
int sum = 0;
for (int i = 0; i<3; i++)//计算每个位置距离理想位置的曼哈顿距离
{
for (int j = 0; j<3; j++)
{
int u = cur.mase[i][j];
sum += abs(pii[u].first - i) + abs(pii[u].second - j);
}
}
return sum;
}
int vis[M];
int an[4][2] = { -1,0, 1,0, 0,-1, 0,1 };
void A_star(node cur)
{
priority_queue<node> Q;
cur.g = 0;
cur.h = getH(cur);
cur.f = cur.g + cur.h;
cur.flag = -1;
Q.push(cur);
memset(vis, -1, sizeof(vis));
memset(pre, -1, sizeof(pre));
memset(v, -1, sizeof(v));
vis[Cantor(cur)] = 1;
while (!Q.empty())
{
cur = Q.top();
Q.pop();
if (Cantor(cur) == destination)
{
print(cur);
return;
}
for (int i = 0; i<4; i++)
{
tail.x = cur.x + an[i][0];
tail.y = cur.y + an[i][1];
int x = cur.x, y = cur.y;
for (int u = 0; u<3; u++)
for (int v = 0; v<3; v++)
tail.mase[u][v] = cur.mase[u][v];
if (tail.x<0 || tail.x >= 3 || tail.y<0 || tail.y >= 3)
continue;
swap(tail.mase[tail.x][tail.y], tail.mase[x][y]);//移动后交换位置
int sum = Cantor(tail);//康托展开防止重复
if (vis[sum] == -1)
{
if (is_ok(tail) == 0) continue;
vis[sum] = 1;
tail.g = cur.g + 1;
tail.h = getH(tail);
tail.f = tail.g + tail.h;
if (tail.x == x + 1) tail.flag = 1;
else if (tail.x == x - 1) tail.flag = 0;
else if (tail.y == y - 1) tail.flag = 2;
else if (tail.y == y + 1) tail.flag = 3;
pre[sum] = Cantor(cur);//记录sum的顺序
v[sum] = i;//sum对应找到方向i
Q.push(tail);
}
}
}
return;
}
int main()
{
char str[100];
while (gets(str))
{
int r = 0, c = 0;
int len = strlen(str);
int ok = 0;
for (int i = 0; i<len; i++)
{
if (str[i] >= '0' && str[i] <= '9')
{
start.mase[r][c] = str[i] - '0';
c++;
if (c == 3) { r++; c = 0; }
}
else if (str[i] == 'x')
{
start.mase[r][c] = 0;
start.x = r; start.y = c;
c++;
if (c == 3) { r++; c = 0; }
}
}
int sum = Cantor(start);
if (sum == destination) //已经满足
{
printf("\n");
continue;
}
if (is_ok(start) == 0)//不可能实现的
{
printf("unsolvable\n");
continue;
}
A_star(start);
printf("\n");
}
return 0;
}