一、Reactor模式

1、Reactor模式概述

在多线程并发模式,最简单的就是与“线程”捆绑,1个线程处理1个连接的全部生命周期。优点:这个模型足够简单,它可以实现复杂的业务场景,同时,线程个数是可以远大于CPU个数的。然而,线程个数又不是可以无限增大的,因为线程什么时候执行是由操作系统内核调度算法决定的,调度算法并不会考虑某个线程可能只是为了一个连接服务的,它会做大一统的玩法:时间片到了就执行一下,哪怕这个线程一执行就会不得不继续睡眠。这样来回的唤醒、睡眠线程在次数不多的情况下,是廉价的,但如果操作系统的线程总数很多时,它就是昂贵的(被放大了),因为这种技术性的调度损耗会影响到线程上执行的业务代码的时间。我们所追求的是并发处理数十万连接,当几千个线程出现时,系统的执行效率就已经无法满足高并发了。

改进方法是:
采用基于事件驱动的设计,当有事件触发时,才会调用处理器进行数据处理。使用Reactor模式,对线程的数量进行控制,一个线程处理大量的事件。

netty的整体架构,基于Reactor模式。Reactor模式是高性能网络编程的必知必会模式。Reactor模式也叫反应器模式,大多数IO相关组件如Netty、Redis在使用的IO模式,为什么需要这种模式,它是如何设计来解决高性能并发的呢?

2、单线程Reactor模式

2.1 Reactor模型的简单原型

Java的NIO模式的Selector网络通讯,其实就是一个简单的Reactor模型。可以说是Reactor模型的简单原型。

static class Server
    {
        public static void testServer() throws IOException
        {
            // 1、获取Selector选择器
            Selector selector = Selector.open();
            // 2、获取通道
            ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
            // 3.设置为非阻塞
            serverSocketChannel.configureBlocking(false);
            // 4、绑定连接
            serverSocketChannel.bind(new InetSocketAddress(8081));
            // 5、将通道注册到选择器上,并注册的操作为:“接收”操作
            serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
            // 6、采用轮询的方式,查询获取“准备就绪”的注册过的操作
            while (selector.select() > 0)
            {
                // 7、获取当前选择器中所有注册的选择键(“已经准备就绪的操作”)
                Iterator<SelectionKey> selectedKeys = selector.selectedKeys().iterator();
                while (selectedKeys.hasNext())
                {
                    // 8、获取“准备就绪”的时间
                    SelectionKey selectedKey = selectedKeys.next();
                    // 9、判断key是具体的什么事件
                    if (selectedKey.isAcceptable())
                    {
                        // 10、若接受的事件是“接收就绪” 操作,就获取客户端连接
                        SocketChannel socketChannel = serverSocketChannel.accept();
                        // 11、切换为非阻塞模式
                        socketChannel.configureBlocking(false);
                        // 12、将该通道注册到selector选择器上
                        socketChannel.register(selector, SelectionKey.OP_READ);
                    }
                    else if (selectedKey.isReadable())
                    {
                        // 13、获取该选择器上的“读就绪”状态的通道
                        SocketChannel socketChannel = (SocketChannel) selectedKey.channel();
                        // 14、读取数据
                        ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
                        int length = 0;
                        while ((length = socketChannel.read(byteBuffer)) != -1)
                        {
                            byteBuffer.flip();
                            System.out.println(new String(byteBuffer.array(), 0, length));
                            byteBuffer.clear();
                        }
                        socketChannel.close();
                    }
                    // 15、移除选择键
                    selectedKeys.remove();
                }
            }
            // 7、关闭连接
            serverSocketChannel.close();
        }
        public static void main(String[] args) throws IOException
        {
            testServer();
        }
    }

实际上的Reactor模式,是基于Java NIO的,在他的基础上,抽象出来两个组件——Reactor和Handler两个组件:
(1)Reactor:负责响应IO事件,当检测到一个新的事件,将其发送给相应的Handler去处理;新的事件包含连接建立就绪、读就绪、写就绪等。
(2)Handler: 将自身(handler)与事件绑定,负责事件的处理,完成channel的读入,完成处理业务逻辑后,负责将结果写出channel。

2.2 reactor单线程模型

netty reactor 工作架构图 netty的reactor模型_netty reactor 工作架构图


这是最简单的单Reactor单线程模型。Reactor线程负责多路分离套接字,Accept新连接,并分派请求到Handler处理器中。

单线程模式的缺点:
1、当其中某个 handler 阻塞时, 会导致其他所有的 client 的 handler 都得不到执行, 并且更严重的是, handler 的阻塞也会导致整个服务不能接收新的 client 请求(因为 acceptor 也被阻塞了)。 因为有这么多的缺陷, 因此单线程Reactor 模型用的比较少。这种单线程模型不能充分利用多核资源,所以实际使用的不多。
2、因此,单线程模型仅仅适用于handler 中业务处理组件能快速完成的场景。

3、reactor多线程模型

3.1 基于线程池改进

在线程Reactor模式基础上,做如下改进:
(1)将Handler处理器的执行放入线程池,多线程进行业务处理。
(2)而对于Reactor而言,可以仍为单个线程。如果服务器为多核的CPU,为充分利用系统资源,可以将Reactor拆分为两个线程。

一个简单的图如下:

netty reactor 工作架构图 netty的reactor模型_java_02

3.2 多线程Reactor参考代码
class Reactor implements Runnable
{
    final Selector selector;
    final ServerSocketChannel serverSocket;

    Reactor(int port) throws IOException
    { //Reactor初始化
        selector = Selector.open();
        serverSocket = ServerSocketChannel.open();
        serverSocket.socket().bind(new InetSocketAddress(port));
        //非阻塞
        serverSocket.configureBlocking(false);

        //分步处理,第一步,接收accept事件
        SelectionKey sk =
                serverSocket.register(selector, SelectionKey.OP_ACCEPT);
        //attach callback object, Acceptor
        sk.attach(new Acceptor());
    }

    public void run()
    {
        try
        {
            while (!Thread.interrupted())
            {
                selector.select();
                Set selected = selector.selectedKeys();
                Iterator it = selected.iterator();
                while (it.hasNext())
                {
                    //Reactor负责dispatch收到的事件
                    dispatch((SelectionKey) (it.next()));
                }
                selected.clear();
            }
        } catch (IOException ex)
        { /* ... */ }
    }

    void dispatch(SelectionKey k)
    {
        Runnable r = (Runnable) (k.attachment());
        //调用之前注册的callback对象
        if (r != null)
        {
            r.run();
        }
    }

    // inner class
    class Acceptor implements Runnable
    {
        public void run()
        {
            try
            {
                SocketChannel channel = serverSocket.accept();
                if (channel != null)
                    new ThreadHandler(selector, channel);
            } catch (IOException ex)
            { /* ... */ }
        }
    }
}

Handler代码如下:

class ThreadHandler implements Runnable
{
    final SocketChannel channel;
    final SelectionKey selectionKey;
    ByteBuffer input = ByteBuffer.allocate(1024*1024*1024);
    ByteBuffer output = ByteBuffer.allocate(1024*1024*1024);
    static final int READING = 0, SENDING = 1;
    int state = READING;
    ExecutorService pool = Executors.newFixedThreadPool(2);
    static final int PROCESSING = 3;
    ThreadHandler(Selector selector, SocketChannel c) throws IOException
    {
        channel = c;
        c.configureBlocking(false);
        // Optionally try first read now
        selectionKey = channel.register(selector, 0);
        //将Handler作为callback对象
        selectionKey.attach(this);
        //第二步,注册Read就绪事件
        selectionKey.interestOps(SelectionKey.OP_READ);
        selector.wakeup();
    }
    boolean inputIsComplete()
    {
       /* ... */
        return false;
    }
    boolean outputIsComplete()
    {
       /* ... */
        return false;
    }
    void process()
    {
       /* ... */
        return;
    }
    public void run()
    {
        try
        {
            if (state == READING)
            {
                read();
            }
            else if (state == SENDING)
            {
                send();
            }
        } catch (IOException ex)
        { /* ... */ }
    }
    synchronized void read() throws IOException
    {
        // ...
        channel.read(input);
        if (inputIsComplete())
        {
            state = PROCESSING;
            //使用线程pool异步执行
            pool.execute(new Processer());
        }
    }
    void send() throws IOException
    {
        channel.write(output);
        //write完就结束了, 关闭select key
        if (outputIsComplete())
        {
            selectionKey.cancel();
        }
    }
    synchronized void processAndHandOff()
    {
        process();
        state = SENDING;
        // or rebind attachment
        //process完,开始等待write就绪
        selectionKey.interestOps(SelectionKey.OP_WRITE);
    }
    class Processer implements Runnable
    {
        public void run()
        {
            processAndHandOff();
        }
    }
}

4、Reactor模式改进

对于多个CPU的机器,为充分利用系统资源,将Reactor拆分为两部分。代码如下:

class MthreadReactor implements Runnable
{
    //subReactors集合, 一个selector代表一个subReactor
    Selector[] selectors=new Selector[2];
    int next = 0;
    final ServerSocketChannel serverSocket;

    MthreadReactor(int port) throws IOException
    { //Reactor初始化
        selectors[0]=Selector.open();
        selectors[1]= Selector.open();
        serverSocket = ServerSocketChannel.open();
        serverSocket.socket().bind(new InetSocketAddress(port));
        //非阻塞
        serverSocket.configureBlocking(false);
        //分步处理,第一步,接收accept事件
        SelectionKey sk =
                serverSocket.register( selectors[0], SelectionKey.OP_ACCEPT);
        //attach callback object, Acceptor
        sk.attach(new Acceptor());
    }
    public void run()
    {
        try
        {
            while (!Thread.interrupted())
            {
                for (int i = 0; i <2 ; i++)
                {
                    selectors[i].select();
                    Set selected =  selectors[i].selectedKeys();
                    Iterator it = selected.iterator();
                    while (it.hasNext())
                    {
                        //Reactor负责dispatch收到的事件
                        dispatch((SelectionKey) (it.next()));
                    }
                    selected.clear();
                }
            }
        } catch (IOException ex)
        { /* ... */ }
    }
    void dispatch(SelectionKey k)
    {
        Runnable r = (Runnable) (k.attachment());
        //调用之前注册的callback对象
        if (r != null)
        {
            r.run();
        }
    }
    class Acceptor { // ...
        public synchronized void run() throws IOException
        {
            SocketChannel connection =
                    serverSocket.accept(); //主selector负责accept
            if (connection != null)
            {
                new Handler(selectors[next], connection); //选个subReactor去负责接收到的connection
            }
            if (++next == selectors.length) next = 0;
        }
    }
}

5、Reactor模式总结

5. 1 优点

1)响应快,不必为单个同步时间所阻塞,虽然Reactor本身依然是同步的;
2)编程相对简单,可以最大程度的避免复杂的多线程及同步问题,并且避免了多线程/进程的切换开销;
3)可扩展性,可以方便的通过增加Reactor实例个数来充分利用CPU资源;
4)可复用性,reactor框架本身与具体事件处理逻辑无关,具有很高的复用性;

5.2 缺点

1)相比传统的简单模型,Reactor增加了一定的复杂性,因而有一定的门槛,并且不易于调试。
2)Reactor模式需要底层的Synchronous Event Demultiplexer支持,比如Java中的Selector支持,操作系统的select系统调用支持,如果要自己实现Synchronous Event Demultiplexer可能不会有那么高效。
3) Reactor模式在IO读写数据时还是在同一个线程中实现的,即使使用多个Reactor机制的情况下,那些共享一个Reactor的Channel如果出现一个长时间的数据读写,会影响这个Reactor中其他Channel的相应时间,比如在大文件传输时,IO操作就会影响其他Client的相应时间,因而对这种操作,使用传统的Thread-Per-Connection或许是一个更好的选择;