函数式编程
二、map/reduce
1.了解map/reduce的概念
reduce
的用法。reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
reduce
实现:
>>> from functools import reduce
>>> def add(x, y):
... return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
sum()
,没必要动用reduce
。[1, 3, 5, 7, 9]
变换成整数13579
,reduce
就可以派上用场:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579
str
也是一个序列,对上面的例子稍加改动,配合map()
,我们就可以写出把str
转换为int
的函数:
>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> def char2num(s):
... return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579
str2int
的函数就是:
from functools import reduce
def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
return reduce(fn, map(char2num, s))
还可以用lambda函数进一步简化成:
from functools import reduce
def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
def str2int(s):
return reduce(lambda x, y: x * 10 + y, map(char2num, s))
int()
函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!
2.编写str2float函数,把字符创转换为浮点数
利用map
和reduce
编写一个str2float
函数,把字符串'123.456'
转换成浮点数123.456
:
def str2float(s):
def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
Ln = s.split('.')
m = reduce(lambda x, y: x * 10 + y, map(char2num, Ln[0]))
###reversed()将小数部分反转,得到正常相加的结果
n = reduce(lambda x, y: x * 0.1 + y, map(char2num, reversed(Ln[1])))
return m + n * 0.1
# print(Ln ,m + n * 0.1)
print('str2float(\'123.456\') =', str2float('123.456'))
print(123.456==str2float('123.456'))
三、filter
回数是指从左向右读和从右向左读都是一样的数,例如
12321
,
909
。请利用
filter()
滤掉非回数:
def is_palindrome(n): # 判断是否为回数
return n == int(str(n)[::-1]) # [::-1]倒序取序列中的元素
output = filter(is_palindrome, range(1, 1000))
print(list(output))
四、返回函数
f()
才执行。我们来看一个例子:
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
f1()
,f2()
和f3()
结果应该是1
,4
,9
,但实际结果是:
>>> f1()
9
>>> f2()
9
>>> f3()
9
9
!原因就在于返回的函数引用了变量i
,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i
已经变成了3
,因此最终结果为9
。
返回闭包时牢记的一点就是:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
再看看结果:
>>> f1, f2, f3 = count()
>>> f1()
1
>>> f2()
4
>>> f3()
9
缺点是代码较长,可利用lambda函数缩短代码。