//求任意多边形的面积
/*语法:result = polygonarea(vector<Point>&polygon, int N);
参数:
polygon:多变形顶点数组
N:多边形顶点数目
返回值:多边形面积
注意:
支持任意多边形,凹、凸皆可
多边形顶点输入时按顺时针顺序排列
*/
#include <iostream>
#include <vector>
using namespace std;
typedef struct Point{
double x, y;
Point(){}
} Point;
double polygonarea(vector<Point>&polygon, int N)
{
int i, j;
double area = 0;
for (i = 0; i<N; i++) {
j = (i + 1) % N;
area += polygon[i].x * polygon[j].y;
area -= polygon[i].y * polygon[j].x;
}
area /= 2;
return(area < 0 ? -area : area);
}
//测试函数
int main(){
vector<Point> polygon;
int n;
cin >> n;
polygon.resize(n);
int i = 0;
while (n--){
double x, y;
cin >> x >> y;
polygon[i].x = x;
polygon[i].y = y;
++i;
}
cout << "此多边形的面积为" << polygonarea(polygon, polygon.size()) << endl;
return 0;
}
参考:C++实现——任意多边形的面积
计算IOU代码稍后补充。
计算IOU最初只计算正矩形的IOU,当矩形有角度或者任意四边形的IOU计算就比较困难。一般见到的计算IOU都是python直接调用封装好的库。如下,下面代码从shapely中导出Polygon库,其实可以直接导入Polygon库。
看到一篇clipper和Polygon的文章:python多边形裁剪库效果对比
背景:在进行目标检测时,常常会用到交并比的概念(IoU(Intersection over Union))
一般来说,这个IoU > 0.5 就可以被认为是一个不错的结果
1.规则矩形框的IoU计算
有些目标检测中,预测的边界框为规则的矩形,则只需要知道矩形的左上角和右下角的坐标信息,就可以得到矩形框所有想要的信息。对于这种情况,IoU的python实现如下(python3.5)
def IoU(box1, box2):
'''
计算两个矩形框的交并比
:param box1: list,第一个矩形框的左上角和右下角坐标
:param box2: list,第二个矩形框的左上角和右下角坐标
:return: 两个矩形框的交并比iou
'''
x1 = max(box1[0], box2[0]) # 交集左上角x
x2 = min(box1[2], box2[2]) # 交集右下角x
y1 = max(box1[1], box2[1]) # 交集左上角y
y2 = min(box1[3], box2[3]) # 交集右下角y
overlap = max(0., x2-x1) * max(0., y2-y1)
union = (box1[2]-box1[0]) * (box1[3]-box1[1]) \
+ (box2[2]-box2[0]) * (box2[3]-box2[1]) \
- overlap
return overlap/union
if __name__ == '__main__':
# box = [左上角x1,左上角y1,右下角x2,右下角y2]
box1 = [10, 0, 15, 10]
box2 = [12, 5, 20, 15]
iou = IoU(box1, box2)
2. 非矩形框IoU计算
在有些目标检测中,检测框并不是规则的矩形框,例如自然场景下的文本检测,有些呈现平行四边形,梯形等情况,这时计算IoU时,就比较复杂一些。这时可以借助于python的一些库实现多边形的面积计算
import shapely
import numpy as np
from shapely.geometry import Polygon, MultiPoint # 多边形
def bbox_iou_eval(box1, box2):
'''
利用python的库函数实现非矩形的IoU计算
:param box1: list,检测框的四个坐标[x1,y1,x2,y2,x3,y3,x4,y4]
:param box2: lsit,检测框的四个坐标[x1,y1,x2,y2,x3,y3,x4,y4]
:return: IoU
'''
box1 = np.array(box1).reshape(4, 2) # 四边形二维坐标表示
# python四边形对象,会自动计算四个点,并将四个点重新排列成
# 左上,左下,右下,右上,左上(没错左上排了两遍)
poly1 = Polygon(box1).convex_hull
box2 = np.array(box2).reshape(4, 2)
poly2 = Polygon(box2).convex_hull
if not poly1.intersects(poly2): # 如果两四边形不相交
iou = 0
else:
try:
inter_area = poly1.intersection(poly2).area # 相交面积
iou = float(inter_area) / (poly1.area + poly2.area - inter_area)
except shapely.geos.TopologicalError:
print('shapely.geos.TopologicalError occured, iou set to 0')
iou = 0
return iou
if __name__ == '__main__':
# box = [四个点的坐标,顺序无所谓]
box3 = [10, 0, 15, 0, 15, 10, 10, 10] # 左上,右上,右下,左下
box4 = [12, 5, 20, 2, 20, 15, 12, 15]
iou = bbox_iou_eval(box3, box4)
print(iou)
参考:IOU交并比的计算
关于计算交集面积的代码看到一篇,还没有验证:Gym 100952J&&2015 HIAST Collegiate Programming Contest J. Polygons Intersection【计算几何求解两个凸多边形的相交面积板子题】
#include "iostream"
#include "string.h"
#include "stack"
#include "queue"
#include "string"
#include "vector"
#include "set"
#include "map"
#include "algorithm"
#include "stdio.h"
#include "math.h"
#define ll long long
#define bug(x) cout<<x<<" "<<"UUUUU"<<endl;
#define mem(a) memset(a,0,sizeof(a))
#define mp(x,y) make_pair(x,y)
using namespace std;
const long long INF = 1e18+1LL;
const int inf = 1e9+1e8;
const int N=1e5+100;
#define maxn 510
const double eps=1E-8;
int sig(double d){
return(d>eps)-(d<-eps);
}
struct Point{
double x,y; Point(){}
Point(double x,double y):x(x),y(y){}
bool operator==(const Point&p)const{
return sig(x-p.x)==0&&sig(y-p.y)==0;
}
};
double cross(Point o,Point a,Point b){
return(a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y);
}
double area(Point* ps,int n){
ps[n]=ps[0];
double res=0;
for(int i=0;i<n;i++){
res+=ps[i].x*ps[i+1].y-ps[i].y*ps[i+1].x;
}
return res/2.0;
}
int lineCross(Point a,Point b,Point c,Point d,Point&p){
double s1,s2;
s1=cross(a,b,c);
s2=cross(a,b,d);
if(sig(s1)==0&&sig(s2)==0) return 2;
if(sig(s2-s1)==0) return 0;
p.x=(c.x*s2-d.x*s1)/(s2-s1);
p.y=(c.y*s2-d.y*s1)/(s2-s1);
return 1;
}
//多边形切割
//用直线ab切割多边形p,切割后的在向量(a,b)的左侧,并原地保存切割结果
//如果退化为一个点,也会返回去,此时n为1
void polygon_cut(Point*p,int&n,Point a,Point b){
static Point pp[maxn];
int m=0;p[n]=p[0];
for(int i=0;i<n;i++){
if(sig(cross(a,b,p[i]))>0) pp[m++]=p[i];
if(sig(cross(a,b,p[i]))!=sig(cross(a,b,p[i+1])))
lineCross(a,b,p[i],p[i+1],pp[m++]);
}
n=0;
for(int i=0;i<m;i++)
if(!i||!(pp[i]==pp[i-1]))
p[n++]=pp[i];
while(n>1&&p[n-1]==p[0])n--;
}
//---------------华丽的分隔线-----------------//
//返回三角形oab和三角形ocd的有向交面积,o是原点//
double intersectArea(Point a,Point b,Point c,Point d){
Point o(0,0);
int s1=sig(cross(o,a,b));
int s2=sig(cross(o,c,d));
if(s1==0||s2==0)return 0.0;//退化,面积为0
if(s1==-1) swap(a,b);
if(s2==-1) swap(c,d);
Point p[10]={o,a,b};
int n=3;
polygon_cut(p,n,o,c);
polygon_cut(p,n,c,d);
polygon_cut(p,n,d,o);
double res=fabs(area(p,n));
if(s1*s2==-1) res=-res;return res;
}
//求两多边形的交面积
double intersectArea(Point*ps1,int n1,Point*ps2,int n2){
if(area(ps1,n1)<0) reverse(ps1,ps1+n1);
if(area(ps2,n2)<0) reverse(ps2,ps2+n2);
ps1[n1]=ps1[0];
ps2[n2]=ps2[0];
double res=0;
for(int i=0;i<n1;i++){
for(int j=0;j<n2;j++){
res+=intersectArea(ps1[i],ps1[i+1],ps2[j],ps2[j+1]);
}
}
return res;//assumeresispositive!
}
//hdu-3060求两个任意简单多边形的并面积
Point ps1[maxn],ps2[maxn];
int n1,n2;
int main(){
int t;
cin>>t;
while(t--){
scanf("%d%d",&n1,&n2);
for(int i=0;i<n1;i++)
scanf("%lf%lf",&ps1[i].x,&ps1[i].y);
for(int i=0;i<n2;i++)
scanf("%lf%lf",&ps2[i].x,&ps2[i].y);
double ans=intersectArea(ps1,n1,ps2,n2);
//ans=fabs(area(ps1,n1))+fabs(area(ps2,n2))-ans;//容斥
printf("%.4f\n",ans);
}
return 0;
}
运行输入和结果如下(其中前四行是输入,最后一行是输出):
另外还看到一篇计算IOU的代码:https://github.com/CAPTAIN-WHU/DOTA_devkit/blob/master/polyiou.cpp
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include <vector>
using namespace std;
#define maxn 51
const double eps=1E-8;
int sig(double d){
return(d>eps)-(d<-eps);
}
struct Point{
double x,y; Point(){}
Point(double x,double y):x(x),y(y){}
bool operator==(const Point&p)const{
return sig(x-p.x)==0&&sig(y-p.y)==0;
}
};
double cross(Point o,Point a,Point b){ //叉积
return(a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y);
}
double area(Point* ps,int n){
ps[n]=ps[0];
double res=0;
for(int i=0;i<n;i++){
res+=ps[i].x*ps[i+1].y-ps[i].y*ps[i+1].x;
}
return res/2.0;
}
int lineCross(Point a,Point b,Point c,Point d,Point&p){
double s1,s2;
s1=cross(a,b,c);
s2=cross(a,b,d);
if(sig(s1)==0&&sig(s2)==0) return 2;
if(sig(s2-s1)==0) return 0;
p.x=(c.x*s2-d.x*s1)/(s2-s1);
p.y=(c.y*s2-d.y*s1)/(s2-s1);
return 1;
}
//多边形切割
//用直线ab切割多边形p,切割后的在向量(a,b)的左侧,并原地保存切割结果
//如果退化为一个点,也会返回去,此时n为1
//void polygon_cut(Point*p,int&n,Point a,Point b){
// static Point pp[maxn];
// int m=0;p[n]=p[0];
// for(int i=0;i<n;i++){
// if(sig(cross(a,b,p[i]))>0) pp[m++]=p[i];
// if(sig(cross(a,b,p[i]))!=sig(cross(a,b,p[i+1])))
// lineCross(a,b,p[i],p[i+1],pp[m++]);
// }
// n=0;
// for(int i=0;i<m;i++)
// if(!i||!(pp[i]==pp[i-1]))
// p[n++]=pp[i];
// while(n>1&&p[n-1]==p[0])n--;
//}
void polygon_cut(Point*p,int&n,Point a,Point b, Point* pp){
// static Point pp[maxn];
int m=0;p[n]=p[0];
for(int i=0;i<n;i++){
if(sig(cross(a,b,p[i]))>0) pp[m++]=p[i];
if(sig(cross(a,b,p[i]))!=sig(cross(a,b,p[i+1])))
lineCross(a,b,p[i],p[i+1],pp[m++]);
}
n=0;
for(int i=0;i<m;i++)
if(!i||!(pp[i]==pp[i-1]))
p[n++]=pp[i];
while(n>1&&p[n-1]==p[0])n--;
}
//---------------华丽的分隔线-----------------//
//返回三角形oab和三角形ocd的有向交面积,o是原点//
double intersectArea(Point a,Point b,Point c,Point d){
Point o(0,0);
int s1=sig(cross(o,a,b));
int s2=sig(cross(o,c,d));
if(s1==0||s2==0)return 0.0;//退化,面积为0
if(s1==-1) swap(a,b);
if(s2==-1) swap(c,d);
Point p[10]={o,a,b};
int n=3;
Point pp[maxn];
polygon_cut(p,n,o,c, pp);
polygon_cut(p,n,c,d, pp);
polygon_cut(p,n,d,o, pp);
double res=fabs(area(p,n));
if(s1*s2==-1) res=-res;return res;
}
//求两多边形的交面积
double intersectArea(Point*ps1,int n1,Point*ps2,int n2){
if(area(ps1,n1)<0) reverse(ps1,ps1+n1);
if(area(ps2,n2)<0) reverse(ps2,ps2+n2);
ps1[n1]=ps1[0];
ps2[n2]=ps2[0];
double res=0;
for(int i=0;i<n1;i++){
for(int j=0;j<n2;j++){
res+=intersectArea(ps1[i],ps1[i+1],ps2[j],ps2[j+1]);
}
}
return res;//assumeresispositive!
}
double iou_poly(vector<double> p, vector<double> q) {
Point ps1[maxn],ps2[maxn];
int n1 = 4;
int n2 = 4;
for (int i = 0; i < 4; i++) {
ps1[i].x = p[i * 2];
ps1[i].y = p[i * 2 + 1];
ps2[i].x = q[i * 2];
ps2[i].y = q[i * 2 + 1];
}
double inter_area = intersectArea(ps1, n1, ps2, n2);
double union_area = fabs(area(ps1, n1)) + fabs(area(ps2, n2)) - inter_area;
double iou = inter_area / union_area;
// cout << "inter_area:" << inter_area << endl;
// cout << "union_area:" << union_area << endl;
// cout << "iou:" << iou << endl;
return iou;
}
//
//int main(){
// double p[8] = {0, 0, 1, 0, 1, 1, 0, 1};
// double q[8] = {0.5, 0.5, 1.5, 0.5, 1.5, 1.5, 0.5, 1.5};
// vector<double> P(p, p + 8);
// vector<double> Q(q, q + 8);
// iou_poly(P, Q);
// return 0;
//}
//int main(){
// double p[8] = {0, 0, 1, 0, 1, 1, 0, 1};
// double q[8] = {0.5, 0.5, 1.5, 0.5, 1.5, 1.5, 0.5, 1.5};
// iou_poly(p, q);
// return 0;
//}
其头文件:https://github.com/CAPTAIN-WHU/DOTA_devkit/blob/master/polyiou.h
//
// Created by dingjian on 18-2-3.
//
#ifndef POLYIOU_POLYIOU_H
#define POLYIOU_POLYIOU_H
#include <vector>
double iou_poly(std::vector<double> p, std::vector<double> q);
#endif //POLYIOU_POLYIOU_H