'''
@ File name :Practice of linear regression
@ Role of documents: For getting started with deep learning
@ Author's name (CSDN): 草原一只鹰
@ Website link :
'''
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False
# 1.定义损失函数,计算误差 loss = 求和(wx+b-yi)的平方和
def compute_error_for_line_given_points(b,w,points):
totalError = 0
for i in range(0,len(points)):
x = points[i,0]
y = points[i,1]
'''
points[]表示引用列表中的数据,points中的数据是成对排列为两列,
第一列标号为0,第二列标号为1,行号为i,x在第一行,y在第二行
'''
totalError += (y - (w * x + b)) ** 2
return totalError / (2*float(len(points)))
# 2. 计算每一步的梯度,对b和w求导,并更新参数,返回
def step_gradient(b_current,w_current,points,learningrate):
b_gradient = 0
w_gradient = 0
N = float(len(points))
for i in range(len(points)):
x = points[i,0]
y = points[i,1]
b_gradient += -(1/N)*(y - ((w_current*x)+b_current))
w_gradient += -(1/N)*x*(y-((w_current*x)+b_current))
new_b = b_current - (learningrate*b_gradient)
new_w = w_current - (learningrate*w_gradient)
return [new_b,new_w]
# 3.开始执行梯度下降迭代过程,并绘制图像
def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations):
b = starting_b
w = starting_w
losserror = [] # losserror用来保存每轮迭代的误差,用来绘制函数图像
for i in range(num_iterations):
b, w = step_gradient(b, w, np.array(points), learning_rate)
# np.array()的作用就是按照一定要求将object转换为数组。
# 将此轮迭代的误差添加到losserror列表中
losserror.append(compute_error_for_line_given_points(b, w, points))
# 绘制误差函数随着迭代次数增加对应的图像
plt.figure() # 定义一个图像窗口
plt.plot(range(num_iterations), losserror)
plt.xlabel('迭代次数')
plt.ylabel('损失函数的值')
plt.title('损失函数随迭代次数关系图')
plt.show() # 注意不能忘了plt.show()
return [b, w]
# 4.运行程序,并定义所需参数
def run():
points = np.genfromtxt("data.csv", delimiter=",")
learning_rate = 0.0001
initial_b = 0 # 假设初值为零
initial_w = 0
num_iterations = 20 # 定义迭代次数为20次
# 假设b,w的初值后,计算误差
print("Starting gradient descent at b = {0}, m = {1}, error = {2}"
.format(initial_b, initial_w,
compute_error_for_line_given_points(initial_b, initial_w, points))
)
print("Running...")
# 开始运行梯度下降法计算b和w的值
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
print("After {0} iterations b = {1}, m = {2}, error = {3}".
format(num_iterations, b, w,
compute_error_for_line_given_points(b, w, points))
)
[b_final, w_final] = [b,w]
# 绘制拟合图像
c = np.linspace(1.0, 100.0, 20) # np.linspace()函数为在指定的间隔内返回均匀间隔的数字,把区间等分
d = np.zeros(20)
for i in range(20):
d[i] = c[i] * w_final + b_final
plt.figure()
# 添加原始数据
x = points[:, 0]
y = points[:, 1]
plt.scatter(x, y, c='r', s=4.0)
plt.plot(c, d)
plt.title('数据拟合图像')
plt.show()
'''
scatter()函数用来绘制散点图并,使用实参s设置了绘制图形时使用的点的尺寸。
'''
# 5.程序开始运行
if __name__ == '__main__':
run()