Task03:时间序列模型

对某一个或一组变量x(t)进行观察测量,将在一系列时刻t1, t2, …, tn (t为自变量)按照时间次序排列,并用于解释变量和相互关系的数学表达式。<t2<…< tn="" )="" 所得到的离散数字组成序列集合x(t1),="" x(t2),="" …,="" x(tn),我们称之为时间序列。
时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。它一般采用曲线拟合和参数估计方法(如非线性最小二乘法)进行。

ARMA模型的全称是自回归移动平均(auto regression moving average)模型,它是目前最常用的拟合平稳序列的模型,它又可细分为AR模型(auto regression model)、MA模型(moving average model)和ARMA模型(auto regression moving average model)三大类。
AR模型:
一般的p阶自回归过程AR§是
Xt=j1Xt-1+ j2Xt-2 + … + jpXt-p + mt ()
如果随机扰动项是一个白噪声(mt=et),则称(
)式为一纯AR§过程(pure AR§ process),记为
Xt=j1Xt-1+ j2Xt-2 + … + jpXt-p +et
MA模型
如果mt不是一个白噪声,通常认为它是一个q阶的移动平均(moving average)过程MA(q):
mt=et - q1et-1 - q2et-2 - ¼ - qqet-q
该式给出了一个纯MA(q)过程(pure MA§ process)。
ARMA模型:
将纯AR§与纯MA(q)结合,得到一个一般的自回归移动平均(autoregressive moving average)过程ARMA(p,q):
Xt=j1Xt-1+ j2Xt-2 + … + jpXt-p + et - q1et-1 - q2et-2 - ¼ - qqet-q

时间序列的不同分类

时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。分析时间序 列的方法构成数据分析的一个重要领域,即时间序列分析。 时间序列根据所研究的依据不同,可有不同的分类。

1.按所研究的对象的多少分,有一元时间序列和多元时间序列。

2.按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。

3.按序列的统计特性分,有平稳时间序列和非平稳时间序列。如果一个时间序列的概率分布与时间t无关,则称该序列为严格的(狭义的)平稳时间序列。如果序列的 一、二阶矩存在,而且对任意时刻t满足:

(1)均值为常数

(2)协方差为时间间隔 的函数。 则称该序列为宽平稳时间序列,也叫广义平稳时间序列。我们以后所研究的时间序列主 要是宽平稳时间序列。

4.按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。

确定性时间序列分析方法概述

时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势 的。一个时间序列往往是以下几类变化形式的叠加或耦合。 我们常认为一个时间序列可以分解为以下四大部分:

(1)长期趋势变动。它是指时间序列朝着一定的方向持续上升或下降,或停留在 某一水平上的倾向,它反映了客观事物的主要变化趋势。

(2)季节变动。

(3)循环变动。通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相 似的波动。

(4)不规则变动。通常它分为突然变动和随机变动。