目录

需求分析

架构图

代码实现

实践运行

数据报表

需求分析

架构图

代码实现


数据清洗

需求分析

针对算法产生的日志数据进行清洗拆分

1:算法产生的日志数据是嵌套json格式,需要拆分打平

2:针对算法中的国家字段进行大区转换

3:最后把不同类型的日志数据分别进行存储

架构图

Flink数据清洗和数据报表实战_apache数据清洗架构图

代码实现

package henry.flink;

import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import henry.flink.customSource.MyRedisSource;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoFlatMapFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.HashMap;
import java.util.Properties;

/**
 * @Author: Henry
 * @Description: 数据清洗需要
 *          组装代码
 *
 *  创建kafka topic命令:
 *      ./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 5 --topic allData
 *      ./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 5 --topic allDataClean
 *
 * @Date: Create in 2019/5/25 17:47
 **/
public class DataClean {

    private static Logger logger = LoggerFactory.getLogger(DataClean.class); //log.info() 调用

    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 修改并行度
        env.setParallelism(5);

        //checkpoint配置
        env.enableCheckpointing(60000);  // 设置 1分钟=60秒
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);
        env.getCheckpointConfig().setCheckpointTimeout(10000);
        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
        env.getCheckpointConfig().enableExternalizedCheckpoints(
                CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        //设置statebackend
        env.setStateBackend(new RocksDBStateBackend("hdfs://master:9000/flink/checkpoints",true));

        //  指定 Kafka Source
        String topic = "allData";
        Properties prop = new Properties();
        prop.setProperty("bootstrap.servers", "master:9092");
        prop.setProperty("group.id", "con1");
        FlinkKafkaConsumer011<String> myConsumer = new FlinkKafkaConsumer011<String>(
                topic, new SimpleStringSchema(),prop);

        //  获取 Kafka 中的数据,Kakfa 数据格式如下:
        //  {"dt":"2019-01-01 11:11:11", "countryCode":"US","data":[{"type":"s1","score":0.3},{"type":"s1","score":0.3}]}
        DataStreamSource<String> data = env.addSource(myConsumer);    // 并行度根据 kafka topic partition数设定

        //  对数据打平需要对 大区和国家之间的关系进行转换,由于存在对应关系变的可能性,所以不能写死
        //  处理方法:再添加一个Source,把国家和大区之间的关系存到redis数据库中
        //  对于 Redis,官方只提供了 Sink 的支持,没有提供 Source 的支持,所以需要自定义 Source
        //  由于对应关系可能会变,所以隔一段时间从 Redis 取一次最新对应关系
        //  mapData 中存储最新的国家码和大区的映射关系
        DataStream<HashMap<String,String>> mapData = env.addSource(new MyRedisSource())
                .broadcast();    //  可以把数据发送到后面算子的所有并行实际例中进行计算,否则处理数据丢失数据

        //  通过 connect 方法将两个数据流连接在一起,然后再flatMap
        DataStream<String> resData = data.connect(mapData).flatMap(
                                    //参数类型代表:  data ,    mapData         , 返回结果; Json
                 new CoFlatMapFunction<String, HashMap<String, String>, String>() {
                    //  存储国家和大区的映射关系
                    private HashMap<String, String> allMap = new HashMap<String, String>();

                    //  flatMap1 处理 Kafka 中的数据
                    public void flatMap1(String value, Collector<String> out)
                            throws Exception {
                        //  原数据是 Json 格式
                        JSONObject jsonObject = JSONObject.parseObject(value);
                        String dt = jsonObject.getString("dt");
                        String countryCode = jsonObject.getString("countryCode");
                        //  获取大区
                        String area = allMap.get(countryCode);
                        //  迭代取数据,jsonArray每个数据都是一个jsonobject
                        JSONArray jsonArray = jsonObject.getJSONArray("data");
                        for (int i = 0; i < jsonArray.size(); i++) {
                            JSONObject jsonObject1 = jsonArray.getJSONObject(i);
                            System.out.println("areas : -  " + area);
                            jsonObject1.put("area", area);
                            jsonObject1.put("dt", dt);
                            out.collect(jsonObject1.toJSONString());
                        }
                    }

                    //  flatMap2 处理 Redis 返回的 map 类型的数据
                    public void flatMap2(HashMap<String, String> value, Collector<String> out)
                            throws Exception {
                        this.allMap = value;
                    }
                });

        String outTopic = "allDataClean";
        Properties outprop= new Properties();
        outprop.setProperty("bootstrap.servers", "master:9092");
        //第一种解决方案,设置FlinkKafkaProducer011里面的事务超时时间
        //设置事务超时时间
        outprop.setProperty("transaction.timeout.ms",60000*15+"");
        //第二种解决方案,设置kafka的最大事务超时时间

        FlinkKafkaProducer011<String> myproducer = new FlinkKafkaProducer011<>(outTopic,
                new KeyedSerializationSchemaWrapper<String>(
                        new SimpleStringSchema()), outprop,
                FlinkKafkaProducer011.Semantic.EXACTLY_ONCE);
        resData.addSink(myproducer);

        env.execute("Data Clean");

    }
}

功能: 自定义 Redis Source
由于存储的是 国家大区和编码的映射关系
类似于 k-v ,所以返回 HashMap 格式比较好

在 Redis 中保存的国家和大区的关系
Redis中进行数据的初始化,数据格式:
        Hash      大区      国家
        hset areas;   AREA_US      US
        hset areas;   AREA_CT      TW,HK
        hset areas    AREA_AR      PK,SA,KW
        hset areas    AREA_IN     IN
需要把大区和国家的对应关系组装成 java 的 hashmap

package henry.flink.customSource;

import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.exceptions.JedisConnectionException;

import java.util.HashMap;
import java.util.Map;


/**
 * @Author: Henry
 * @Description: 自定义 Redis Source
 *              由于存储的是 国家大区和编码的映射关系
 *              类似于 k-v ,所以返回 HashMap 格式比较好
 *
 * 在 Redis 中保存的国家和大区的关系
 * Redis中进行数据的初始化,数据格式:
 *   Hash        大区    国家
 * hset areas   AREA_US   US
 * hset areas   AREA_CT   TW,HK
 * hset areas   AREA_AR   PK,SA,KW
 * hset areas   AREA_IN   IN
 *
 * 需要把大区和国家的对应关系组装成 java 的 hashmap
 *
 * @Date: Create in 2019/5/25 18:12
 **/

public class MyRedisSource implements SourceFunction<HashMap<String,String>>{
    private Logger logger = LoggerFactory.getLogger(MyRedisSource.class);

    private final long SLEEP_MILLION = 60000 ;

    private boolean isrunning = true;
    private Jedis jedis = null;

    public void run(SourceContext<HashMap<String, String>> ctx) throws Exception {

        this.jedis = new Jedis("master", 6379);
        //  存储所有国家和大区的对应关系
        HashMap<String, String> keyValueMap = new HashMap<String, String>();
        while (isrunning){
            try{
                //  每次执行前先清空,去除旧数据
                keyValueMap.clear();
                //  取出数据
                Map<String, String> areas = jedis.hgetAll("areas");
                //  进行迭代
                for (Map.Entry<String, String> entry : areas.entrySet()){
                    String key = entry.getKey();      //  大区:AREA_AR
                    String value = entry.getValue();  //  国家:PK,SA,KW
                    String[] splits = value.split(",");
                    for (String split : splits){
                        //  这里 split 相当于key, key 是 value
                        keyValueMap.put(split, key); // 即 PK,AREA_AR
                    }
                }
                //  防止取到空数据
                if(keyValueMap.size() > 0){
                    ctx.collect(keyValueMap);
                }
                else {
                    logger.warn("从Redis中获取到的数据为空!");
                }
                //  一分钟提取一次
                Thread.sleep(SLEEP_MILLION);
            }
            // 捕获 Jedis 链接异常
            catch (JedisConnectionException e){
                //  重新获取链接
                jedis = new Jedis("master", 6379);
                logger.error("Redis链接异常,重新获取链接", e.getCause());
            }// 捕获其他异常处理,通过日志记录
            catch (Exception e){
                logger.error("Source数据源异常", e.getCause());
            }
        }
    }

    /**
     *  任务停止,设置 false
     * */
    public void cancel() {
        isrunning = false;
        // 这样可以只获取一次连接在while一直用
        if(jedis != null){
            jedis.close();
        }
    }
}
package henry.flink.utils;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Properties;
import java.util.Random;

/**
 * @Author: Henry
 * @Description: Kafka 生产者
 * @Date: Create in 2019/6/14 15:15
 **/
public class kafkaProducer {
    public static void main(String[] args) throws Exception{
        Properties prop = new Properties();
        //指定kafka broker地址
        prop.put("bootstrap.servers", "master:9092");
        //指定key value的序列化方式
        prop.put("key.serializer", StringSerializer.class.getName());
        prop.put("value.serializer", StringSerializer.class.getName());
        //指定topic名称
        String topic = "allData";

        //创建producer链接
        KafkaProducer<String, String> producer = new KafkaProducer<String,String>(prop);

        //  生成消息数据格式:
        //{"dt":"2018-01-01 10:11:11","countryCode":"US","data":[{"type":"s1","score":0.3,"level":"A"},{"type":"s2","score":0.2,"level":"B"}]}
        while(true){
            String message = "{\"dt\":\""+getCurrentTime()+"\",\"countryCode\":\""+getCountryCode()+"\",\"data\":[{\"type\":\""+getRandomType()+"\",\"score\":"+getRandomScore()+",\"level\":\""+getRandomLevel()+"\"},{\"type\":\""+getRandomType()+"\",\"score\":"+getRandomScore()+",\"level\":\""+getRandomLevel()+"\"}]}";
            System.out.println(message);
            producer.send(new ProducerRecord<String, String>(topic,message));
            Thread.sleep(2000);
        }
        //关闭链接
        //producer.close();
    }

    public static String getCurrentTime(){
        SimpleDateFormat sdf = new SimpleDateFormat("YYYY-MM-dd HH:mm:ss");
        return sdf.format(new Date());
    }

    public static String getCountryCode(){
        String[] types = {"US","TW","HK","PK","KW","SA","IN"};
        Random random = new Random();
        int i = random.nextInt(types.length);
        return types[i];
    }

    public static String getRandomType(){
        String[] types = {"s1","s2","s3","s4","s5"};
        Random random = new Random();
        int i = random.nextInt(types.length);
        return types[i];
    }

    public static double getRandomScore(){
        double[] types = {0.3,0.2,0.1,0.5,0.8};
        Random random = new Random();
        int i = random.nextInt(types.length);
        return types[i];
    }

    public static String getRandomLevel(){
        String[] types = {"A","A+","B","C","D"};
        Random random = new Random();
        int i = random.nextInt(types.length);
        return types[i];
    }
}

实践运行

1.先从一个终端启动redis客户端,并插入数据

./redis-cli
127.0.0.1:6379> hset areas   AREA_US   US
(integer) 1
127.0.0.1:6379> hset areas   AREA_CT   TW,HK
(integer) 1
127.0.0.1:6379> hset areas   AREA_AR   PK,SA,KW
(integer) 1
127.0.0.1:6379> hset areas   AREA_IN   IN
(integer) 1
127.0.0.1:6379>

hgetall查看插入数据情况:

Flink数据清洗和数据报表实战_apache_02
2.kafka创建topc:

./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 5 --topic allData

监控kafka topic:

./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic allDataClean

3.启动程序
先启动 DataClean 程序,再启动生产者程序,kafka生产者产生数据如下:

Flink数据清洗和数据报表实战_apache_03
4.最后终端观察处理输出的数据:

Flink数据清洗和数据报表实战_数据_04

只有部分数据正确处理输出的原因是:代码中没有设置并行度,默认是按机器CPU核数跑的,所以有的线程 allMap 没有数据,有的有数据,所以会导致部分正确,这里需要通过 broadcast() 进行广播,让所有线程都接收到数据:

   DataStream<HashMap<String,String>> mapData = env.addSource(new MyRedisSource()).broadcast();
 

运行结果:

Flink数据清洗和数据报表实战_json_05
控制台打印结果: Flink数据清洗和数据报表实战_kafka_06

 

数据报表

需求分析

主要针对直播/短视频平台审核指标的统计

1:统计不同大区每1 min内过审(上架)的数据量

2:统计不同大区每1 min内未过审(下架)的数据量

3:统计不同大区每1 min内加黑名单的数据量 

架构图

Flink数据清洗和数据报表实战_kafka_07数据报表架构图

 

 存入es主要是方便kibana进行统计

代码实现

package henry.flink;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import henry.flink.function.MyAggFunction;
import henry.flink.watermark.*;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper;
import org.apache.flink.util.OutputTag;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.*;

/**
 * @Author: Henry
 * @Description: 数据报表
 *
 * 创建kafka topic的命令:
 *      bin/kafka-topics.sh  --create --topic lateLog --zookeeper localhost:2181 --partitions 5 --replication-factor 1
 *      bin/kafka-topics.sh  --create --topic auditLog --zookeeper localhost:2181 --partitions 5 --replication-factor 1
 *
 * @Date: Create in 2019/5/29 11:05
 **/
public class DataReport {
    private static Logger logger = LoggerFactory.getLogger(DataReport.class);

    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 设置并行度
        env.setParallelism(5);

        //  设置使用eventtime
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        // checkpoint配置
        env.enableCheckpointing(60000);
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);
        env.getCheckpointConfig().setCheckpointTimeout(10000);
        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
        env.getCheckpointConfig().enableExternalizedCheckpoints(
                CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

        //设置statebackend
        //env.setStateBackend(new RocksDBStateBackend("hdfs://master:9000/flink/checkpoints",true));

        //  指定 Kafka Source
        //  配置 kafkaSource
        String topic = "auditLog";     // 审核日志
        Properties prop = new Properties();
        prop.setProperty("bootstrap.servers", "master:9092");
        prop.setProperty("group.id", "con1");

        FlinkKafkaConsumer011<String> myConsumer = new FlinkKafkaConsumer011<String>(
                topic, new SimpleStringSchema(),prop);

       /*
       *    获取到kafka的数据
       *    审核数据的格式:
       *   {"dt":"审核时间{年月日 时分秒}", "type":"审核类型","username":"审核人姓名","area":"大区"}
       *    说明: json 格式占用的存储空间比较大
       * */
        DataStreamSource<String> data = env.addSource(myConsumer);

        //   对数据进行清洗
        DataStream<Tuple3<Long, String, String>> mapData = data.map(
                new MapFunction<String, Tuple3<Long, String, String>>() {
            @Override
            public Tuple3<Long, String, String> map(String line) throws Exception {

                JSONObject jsonObject = JSON.parseObject(line);
                String dt = jsonObject.getString("dt");

                long time = 0;
                try {
                    SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
                    Date parse = sdf.parse(dt);
                    time = parse.getTime();
                } catch (ParseException e) {
                    //也可以把这个日志存储到其他介质中
                    logger.error("时间解析异常,dt:" + dt, e.getCause());
                }
                String type = jsonObject.getString("type");
                String area = jsonObject.getString("area");

                return new Tuple3<>(time, type, area);
            }
        });

        //   过滤掉异常数据
        DataStream<Tuple3<Long, String, String>> filterData = mapData.filter(
                new FilterFunction<Tuple3<Long, String, String>>() {
            @Override
            public boolean filter(Tuple3<Long, String, String> value) throws Exception {
                boolean flag = true;
                if (value.f0 == 0) {    //   即 time 字段为0
                    flag = false;
                }
                return flag;
            }
        });

        //  保存迟到太久的数据
        OutputTag<Tuple3<Long, String, String>> outputTag = new OutputTag<Tuple3<Long, String, String>>("late-data"){};

        /*
         *  窗口统计操作
         * */
        SingleOutputStreamOperator<Tuple4<String, String, String, Long>> resultData = filterData.assignTimestampsAndWatermarks(
                new MyWatermark())
                .keyBy(1, 2)   // 根据第1、2个字段,即type、area分组,第0个字段是timestamp
                .window(TumblingEventTimeWindows.of(Time.minutes(30)))  //  每隔一分钟统计前一分钟的数据
                .allowedLateness(Time.seconds(30))  // 允许迟到30s
                .sideOutputLateData(outputTag)  // 记录迟到太久的数据
                .apply(new MyAggFunction());

        //  获取迟到太久的数据
        DataStream<Tuple3<Long, String, String>> sideOutput = resultData.getSideOutput(outputTag);

        //  存储迟到太久的数据到kafka中
        String outTopic = "lateLog";
        Properties outprop = new Properties();
        outprop.setProperty("bootstrap.servers", "master:9092");
        //	设置事务超时时间
        outprop.setProperty("transaction.timeout.ms", 60000*15+"");

        FlinkKafkaProducer011<String> myProducer = new FlinkKafkaProducer011<String>(
                outTopic,
                new KeyedSerializationSchemaWrapper<String>(
                        new SimpleStringSchema()),
                        outprop,
                        FlinkKafkaProducer011.Semantic.EXACTLY_ONCE);

        //  迟到太久的数据存储到 kafka 中
        sideOutput.map(new MapFunction<Tuple3<Long, String, String>, String>() {
            @Override
            public String map(Tuple3<Long, String, String> value) throws Exception {
                return value.f0+"\t"+value.f1+"\t"+value.f2;
            }
        }).addSink(myProducer);

        /*
        *   把计算的结存储到 ES 中
        * */
        List<HttpHost> httpHosts = new ArrayList<>();
        httpHosts.add(new HttpHost("master", 9200, "http"));

        ElasticsearchSink.Builder<Tuple4<String, String, String, Long>> esSinkBuilder = new ElasticsearchSink.Builder<
                Tuple4<String, String, String, Long>>(
                httpHosts,
                new ElasticsearchSinkFunction<Tuple4<String, String, String, Long>>() {
                    public IndexRequest createIndexRequest(Tuple4<String, String, String, Long> element) {
                        Map<String, Object> json = new HashMap<>();
                        json.put("time",element.f0);
                        json.put("type",element.f1);
                        json.put("area",element.f2);
                        json.put("count",element.f3);

                        //使用time+type+area 保证id唯一
                        String id = element.f0.replace(" ","_")+"-"+element.f1+"-"+element.f2;

                        return Requests.indexRequest()
                                .index("auditindex")
                                .type("audittype")
                                .id(id)
                                .source(json);
                    }

                    @Override
                    public void process(Tuple4<String, String, String, Long> element,
                                        RuntimeContext ctx, RequestIndexer indexer) {
                        indexer.add(createIndexRequest(element));
                    }
                }
        );

        //  设置批量写数据的缓冲区大小,测试可以为1,实际工作中看时间,一般需要调大
        //  ES是有缓冲区的,这里设置1代表,每增加一条数据直接就刷新到ES
        esSinkBuilder.setBulkFlushMaxActions(1);
        resultData.addSink(esSinkBuilder.build());

        env.execute("DataReport");
    }

}
package henry.flink.function;

import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.Iterator;

/**
 * @Author: Henry
 * @Description: 聚合数据代码
 * @Date: Create in 2019/5/29 14:35
 **/

/**
 *@参数 :  IN:      Tuple3<Long, String, String>
 *         OUT:    Tuple4<String, String, String, Long>
 *         KEY:     Tuple,表示分组字段,如果keyBy() 传递一个字段,则Tuple是一个字段
 *                                       如果keyBy() 传递两个字段,则Tuple就是两个字段(代码38、39行)
 *         Window: TimeWindow
 *@返回值 :
 */
public class MyAggFunction implements WindowFunction<Tuple3<Long, String, String>, Tuple4<String, String, String, Long>, Tuple, TimeWindow>{
    @Override
    public void apply(Tuple tuple,
                      TimeWindow window,
                      Iterable<Tuple3<Long, String, String>> input,
                      Collector<Tuple4<String, String, String, Long>> out)
            throws Exception {
        //获取分组字段信息
        String type = tuple.getField(0).toString();
        String area = tuple.getField(1).toString();

        Iterator<Tuple3<Long, String, String>> it = input.iterator();

        //存储时间,为了获取最后一条数据的时间
        ArrayList<Long> arrayList = new ArrayList<>();

        long count = 0;
        while (it.hasNext()) {
            Tuple3<Long, String, String> next = it.next();
            arrayList.add(next.f0);
            count++;
        }

        System.err.println(Thread.currentThread().getId()+",window触发了,数据条数:"+count);

        //排序,默认正排
        Collections.sort(arrayList);

        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

        String time = sdf.format(new Date(arrayList.get(arrayList.size() - 1)));

        //组装结果
        Tuple4<String, String, String, Long> res = new Tuple4<>(time, type, area, count);

        out.collect(res);
    }
}

处理乱序的waterMark代码 

package henry.flink.watermark;

import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.watermark.Watermark;

import javax.annotation.Nullable;

/**
 * @Author: Henry
 * @Description: 自定义Watermark
 * @Date: Create in 2019/5/29 11:53
 **/
public class MyWatermark implements AssignerWithPeriodicWatermarks<Tuple3<Long, String, String>> {

    Long currentMaxTimestamp = 0L;
    final Long maxOutOfOrderness = 10000L;// 最大允许的乱序时间是10s,具体时间需要根据实际测

    @Nullable
    @Override
    public Watermark getCurrentWatermark() {
        return new Watermark(currentMaxTimestamp-maxOutOfOrderness);
    }

    @Override
    public long extractTimestamp(Tuple3<Long, String, String> element, long previousElementTimestamp) {
        Long timestamp = element.f0;
        currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
        return timestamp;
    }
}

kafka数据源生产代码 

package henry.flink.utils;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Properties;
import java.util.Random;

/**
 * @Author: HongZhen
 * @Description: 创建kafka topic的命令
 *
 * bin/kafka-topics.sh  --create --topic auditLog --zookeeper localhost:2181 --partitions 5 --replication-factor 1
 *
 * @Date: Create in 2019/5/29 11:05
 **/

public class kafkaProducerDataReport {

    public static void main(String[] args) throws Exception{
        Properties prop = new Properties();
        //指定kafka broker地址
        prop.put("bootstrap.servers", "master:9092");
        //指定key value的序列化方式
        prop.put("key.serializer", StringSerializer.class.getName());
        prop.put("value.serializer", StringSerializer.class.getName());
        //指定topic名称
        String topic = "auditLog";

        //创建producer链接
        KafkaProducer<String, String> producer = new KafkaProducer<String,String>(prop);

        //{"dt":"2018-01-01 10:11:22","type":"shelf","username":"shenhe1","area":"AREA_US"}
        //生产消息
        while(true){
            String message = "{\"dt\":\""+getCurrentTime()+"\",\"type\":\""+getRandomType()+"\",\"username\":\""+getRandomUsername()+"\",\"area\":\""+getRandomArea()+"\"}";
            System.out.println(message);
            producer.send(new ProducerRecord<String, String>(topic,message));
            Thread.sleep(2000);
        }
        //关闭链接
        //producer.close();
    }

    public static String getCurrentTime(){
        SimpleDateFormat sdf = new SimpleDateFormat("YYYY-MM-dd HH:mm:ss");
        return sdf.format(new Date());
    }

    public static String getRandomArea(){
        String[] types = {"AREA_US","AREA_CT","AREA_AR","AREA_IN","AREA_ID"};
        Random random = new Random();
        int i = random.nextInt(types.length);
        return types[i];
    }

    public static String getRandomType(){
        String[] types = {"shelf","unshelf","black","chlid_shelf","child_unshelf"};
        Random random = new Random();
        int i = random.nextInt(types.length);
        return types[i];
    }

    public static String getRandomUsername(){
        String[] types = {"shenhe1","shenhe2","shenhe3","shenhe4","shenhe5"};
        Random random = new Random();
        int i = random.nextInt(types.length);
        return types[i];
    }

}