前提条件

CPU >= 4 核
RAM >= 16 GB
Disk >= 50 GB
Docker >= 24.0.0 & Docker Compose >= v2.26.1
如果你并没有在本机安装 Docker(Windows、Mac,或者 Linux), 可以参考文档 Install Docker Engine 自行安装。

启动服务器

确保 vm.max_map_count 不小于 262144:

如需确认 vm.max_map_count 的大小:

$ sysctl vm.max_map_count

如果 vm.max_map_count 的值小于 262144,可以进行重置:

这里我们设为 262144:

$ sudo sysctl -w vm.max_map_count=262144

你的改动会在下次系统重启时被重置。如果希望做永久改动,还需要在 /etc/sysctl.conf 文件里把 vm.max_map_count 的值再相应更新一遍:

vm.max_map_count=262144

克隆仓库:

$ git clone https://github.com/infiniflow/ragflow.git

进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose -f docker-compose-CN.yml up -d

请注意,运行上述命令会自动下载 RAGFlow 的开发版本 docker 镜像。如果你想下载并运行特定版本的 docker 镜像,请在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.7.0,然后运行上述命令。

核心镜像文件大约 9 GB,可能需要一定时间拉取。请耐心等待。

服务器启动成功后再次确认服务器状态:

$ docker logs -f ragflow-server

出现以下界面提示说明服务器启动成功:

____                 ______ __
   / __ \ ____ _ ____ _ / ____// /____  _      __
  / /_/ // __ `// __ `// /_   / // __ \| | /| / /
 / _, _// /_/ // /_/ // __/  / // /_/ /| |/ |/ /
/_/ |_| \__,_/ \__, //_/    /_/ \____/ |__/|__/
              /____/

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:9380
 * Running on http://x.x.x.x:9380
 INFO:werkzeug:Press CTRL+C to quit

如果您跳过这一步系统确认步骤就登录 RAGFlow,你的浏览器有可能会提示 network anomaly 或 网络异常,因为 RAGFlow 可能并未完全启动成功。

在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。

上面这个例子中,您只需输入 http://IP_OF_YOUR_MACHINE 即可:未改动过配置则无需输入端口(默认的 HTTP 服务端口 80)。

在 service_conf.yaml 文件的 user_default_llm 栏配置 LLM factory,并在 API_KEY 栏填写和你选择的大模型相对应的 API key。

搭建ragflow的步骤_python