分类问题

这里记一下keras的预处理、数据增强方法,想看pytorch的移步博主另一篇博客

多分类问题

使用keras自带的类ImageDataGenerator定义一个对象,这个对象在定义的时候可以指定对每张图像进行的操作

#ImageDataGenerator的例子

#加载ImageDataGenerator类
from keras.preprocessing.image import ImageDataGenerator
#加载预加载模型提供的图像归一化方法 preprocess_input,帮你做了去中心化、标准差归一化等操作,不用这个的话也可以只除以某个值,例如利用rescale参数等,也可以利用自定义函数
from keras.applications.inception_v3 import InceptionV3, preprocess_input

#定义对象,参数就是可设置的各种操作,实现数据增强,详细参数自己可以查一下
train_datagen = ImageDataGenerator(
    preprocessing_function = preprocess_input,  #图像预处理
    horizontal_flip = True, 					#垂直翻转
    vertical_flip = True,						#水平翻转
    rotation_range=30,						
    width_shift_range = 0.2, 
    height_shift_range = 0.2, 
    zoom_range = 0.1
)

然后调用该对象的方法flow()或flow_from_directory()

flow()方法要求输入图像X和Y的矩阵,然后根据batch_size输出X和Y,这个方法我不常用因为我的工作数据量一般较大,无法直接全部加载到内存里

常用的是flow_from_directory(),它可以迭代的输出X和对应的标签,输入是一个路径,保存格式要求每个类别的图片放在不同的文件夹中,然后会自动建立文件夹名对类名的映射

这是图片放置的格式,train_set是输入的路径,里面包含了n_class个文件夹,每个文件夹都是一类,里面存放了该类的所有图片

小目标检测数据增强 目标检测数据增强作用_json


看一下生成迭代器的例子

#生成迭代器
train_generator = train_datagen.flow_from_directory(
    directory = TRAIN_DIR, 
    target_size = (IN_SIZE, IN_SIZE),
    batch_size=BATCH_SIZE,
    class_mode='categorical',
    shuffle=True
)

同时mark两个方法

print(train_generator.class_indices)   # 输出对应的标签文件夹
print(train_generator.filenames)  # 按顺序输出文件的名字

多标签问题

一张图片有多个标签的时候无法简单的把每张图分到每一类,而且一般的保存格式是把类别放在CSV里,例如这样

小目标检测数据增强 目标检测数据增强作用_json_02


CSV保存了图片名,第二列是对应的类别,用分号隔开,读取的思路是自己写迭代器,每次返回输入的X和标签Y

先记一下CSV文件的读取和写入过程

#CSV的读取过程
#制作形如[[1.jpg,cls],[2.jpg,cls]...]的列表,并打乱,用来制作训练集和验证集
input_path = "/home/xxx/df_cloud/"
train_data = pd.read_csv(input_path+"xxx.csv")

cls_list = []
source_path = "/home/xxx/df_cloud/train/"
num = 0
for index, row in train_data.iterrows():
    temp = []
    filename = row["FileName"]
    cls = row["Code"]
    for item in cls.split(";"):#这里处理分号隔开的数据
        temp.append(filename)
        temp.append(item)
        cls_list.append(temp)
        temp = []
        num+=1
print(num)
#     num+=1
import random
random.shuffle(cls_list)
#CSV写入过程
root_path = '/home/xxx/df_cloud/test/'
path_list = os.listdir(root_path)
INT_HEIGHT = 299
IN_WIDTH = 299
filenames = []
result = []
for filename in path_list:
    img = load_img(root_path + filename, target_size=(INT_HEIGHT, IN_WIDTH, 3))
    img = img_to_array(img)
    img = preprocess_input(img)
    img = np.expand_dims(img, axis=0)
    prediction = model_2.predict(img)[0] 
    index = list(prediction).index(np.max(prediction))
    res = index_2_cls[index]
    filenames.append(filename)
    result.append(res)
    print(filename)
print(len(filenames))
print(len(result))
import pandas as pd
dataframe = pd.DataFrame({'FileName': filenames, 'type': result})
dataframe.to_csv('/home/xxxf/df_cloud/baseline_1_result_2/submit/baseline_1_2.csv', index=False, header=True)

接着预处理,这里发现keras为我们提供了好用的数据预处理、数据增强函数
想看这些函数的源码可以看这位博主的博客

#数据读取、预处理
from keras.preprocessing.image import img_to_array, load_img
#数据增强方法 大量!!!
from keras.preprocessing.image import random_rotation, random_shift, random_shear, random_zoom, random_channel_shift

这样直接写迭代器就好了(这部分待更新)

线下数据增强方法
还是利用ImageDataGenerator,每次读取一张图,随机数据增强,然后保存进硬盘即可(待更新)

目标检测问题

利用现成的框架来实现目标检测,常规的方法就是把自己的数据整理成VOC、COCO数据集的格式,然后就符合了框架输入的需求,所以问题就在于如何把数据集整理成这些标准格式,我常用的是VOC数据集格式

使用labelme进行数据标注
使用的时候常用3个参数labelme --nodata --output --autosave 使用 labelme -h 可以查看这些参数作用

labelme生成的是json文件,那么就要把json转成需要的xml文件
记一下如何生成xml文件

import os
from lxml.etree import Element, SubElement, tostring
from xml.dom.minidom import parseString
from PIL import Image
#保存xml文件函数的核心实现,输入为图片名称image_name,分类category(一个列表,元素与bbox对应),bbox(一个列表,与分类对应),保存路径save_dir ,通道数channel
def save_xml(image_name, category,bbox, file_dir = '/home/xbw/wurenting/dataset_3/',save_dir='/home/xxx/voc_dataset/Annotations/',channel=3):
    
    file_path = file_dir
    img = Image.open(file_path + image_name)
    width = img.size[0]
    height = img.size[1]

    node_root = Element('annotation')

    node_folder = SubElement(node_root, 'folder')
    node_folder.text = 'VOC2007'

    node_filename = SubElement(node_root, 'filename')
    node_filename.text = image_name

    node_size = SubElement(node_root, 'size')
    node_width = SubElement(node_size, 'width')
    node_width.text = '%s' % width

    node_height = SubElement(node_size, 'height')
    node_height.text = '%s' % height

    node_depth = SubElement(node_size, 'depth')
    node_depth.text = '%s' % channel

    for i in range(len(bbox)):
        left, top, right, bottom = bbox[i][0],bbox[i][1],bbox[i][2], bbox[i][3]
        node_object = SubElement(node_root, 'object')
        node_name = SubElement(node_object, 'name')
        node_name.text = category[i]
        node_difficult = SubElement(node_object, 'difficult')
        node_difficult.text = '0'
        node_bndbox = SubElement(node_object, 'bndbox')
        node_xmin = SubElement(node_bndbox, 'xmin')
        node_xmin.text = '%s' % left
        node_ymin = SubElement(node_bndbox, 'ymin')
        node_ymin.text = '%s' % top
        node_xmax = SubElement(node_bndbox, 'xmax')
        node_xmax.text = '%s' % right
        node_ymax = SubElement(node_bndbox, 'ymax')
        node_ymax.text = '%s' % bottom

    xml = tostring(node_root, pretty_print=True)  
    dom = parseString(xml)

    save_xml = os.path.join(save_dir, image_name.replace('jpg', 'xml'))
    with open(save_xml, 'wb') as f:
        f.write(xml)

    return

只要把json文件保存的类别、bbox读出来,输入函数就可以了

json的读取

with open(file,'r') as obj:
	res = json.load(obj)
	res['xxx'] = xxx

labelme生成的json文件如何保存成xml,这是我使用的脚本,就是把json文件读取出来,然后取出类别和bbox,利用上面的函数写入即可

import os
from lxml.etree import Element, SubElement, tostring
from xml.dom.minidom import parseString
from PIL import Image
import json
json_dir = '/home/xxx/label/label_5/' 
img_dir = '/home/xxx/dataset_5/'
save_dir='/home/xxx/xml/label_5_xml/'
json_list = os.listdir(json_dir)
for image_name in json_list:
    with open(json_dir+image_name) as obj:
        nums = json.load(obj)
        labels = []
        bboxes = []
        for i in nums['shapes']:
            labels.append(i['label'])
            bboxes.append([min(i['points'][0][0],i['points'][1][0]),min(i['points'][0][1],i['points'][1][1]),max(i['points'][0][0],i['points'][1][0]),max(i['points'][0][1],i['points'][1][1])])
        save_xml(image_name[:-5]+'.jpg',labels,bboxes,file_dir = img_dir,save_dir=save_dir)

线下数据增强
这个直接参考了这位博主的实现

# -*- coding=utf-8 -*-
##############################################################
# description:
#     data augmentation for obeject detection
# author:
#     maozezhong 2018-6-27
##############################################################

# 包括:
#     1. 裁剪(需改变bbox)
#     2. 平移(需改变bbox)
#     3. 改变亮度
#     4. 加噪声
#     5. 旋转角度(需要改变bbox)
#     6. 镜像(需要改变bbox)
#     7. cutout
# 注意:   
#     random.seed(),相同的seed,产生的随机数是一样的!!

import time
import random
import cv2
import os
import math
import numpy as np
from skimage.util import random_noise
from skimage import exposure

def show_pic(img, bboxes=None):
    '''
    输入:
        img:图像array
        bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]
        names:每个box对应的名称
    '''
#     cv2.imwrite('./1.jpg', img)
#     img = cv2.imread('./1.jpg')
    img=img/255
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        x_min = bbox[0]
        y_min = bbox[1]
        x_max = bbox[2]
        y_max = bbox[3]
        cv2.rectangle(img,(int(x_min),int(y_min)),(int(x_max),int(y_max)),(0,255,0),3) 
    cv2.namedWindow('pic', 0)  # 1表示原图
    cv2.moveWindow('pic', 0, 0)
    cv2.resizeWindow('pic', 1200,800)  # 可视化的图片大小
    cv2.imshow('pic', img)
    if cv2.waitKey(0)==ord('q'):
        cv2.destroyAllWindows()
        return
    cv2.destroyAllWindows() 
#     os.remove('./1.jpg')

# 图像均为cv2读取
class DataAugmentForObjectDetection():
    def __init__(self, rotation_rate=0.5, max_rotation_angle=5, 
                crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,
                add_noise_rate=0.5, flip_rate=0.5, 
                cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5):
        self.rotation_rate = rotation_rate
        self.max_rotation_angle = max_rotation_angle
        self.crop_rate = crop_rate
        self.shift_rate = shift_rate
        self.change_light_rate = change_light_rate
        self.add_noise_rate = add_noise_rate
        self.flip_rate = flip_rate
        self.cutout_rate = cutout_rate

        self.cut_out_length = cut_out_length
        self.cut_out_holes = cut_out_holes
        self.cut_out_threshold = cut_out_threshold
    
    # 加噪声
    def _addNoise(self, img):
        '''
        输入:
            img:图像array
        输出:
            加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
        '''
        # random.seed(int(time.time())) 
        # return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True)*255
        return random_noise(img, mode='gaussian', clip=True)*255

    
    # 调整亮度
    def _changeLight(self, img):
        # random.seed(int(time.time()))
        flag = random.uniform(0.5, 1.5) #flag>1为调暗,小于1为调亮
        return exposure.adjust_gamma(img, flag)
    
    # cutout
    def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):
        '''
        原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
        Randomly mask out one or more patches from an image.
        Args:
            img : a 3D numpy array,(h,w,c)
            bboxes : 框的坐标
            n_holes (int): Number of patches to cut out of each image.
            length (int): The length (in pixels) of each square patch.
        '''
        
        def cal_iou(boxA, boxB):
            '''
            boxA, boxB为两个框,返回iou
            boxB为bouding box
            '''

            # determine the (x, y)-coordinates of the intersection rectangle
            xA = max(boxA[0], boxB[0])
            yA = max(boxA[1], boxB[1])
            xB = min(boxA[2], boxB[2])
            yB = min(boxA[3], boxB[3])

            if xB <= xA or yB <= yA:
                return 0.0

            # compute the area of intersection rectangle
            interArea = (xB - xA + 1) * (yB - yA + 1)

            # compute the area of both the prediction and ground-truth
            # rectangles
            boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
            boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

            # compute the intersection over union by taking the intersection
            # area and dividing it by the sum of prediction + ground-truth
            # areas - the interesection area
            # iou = interArea / float(boxAArea + boxBArea - interArea)
            iou = interArea / float(boxBArea)

            # return the intersection over union value
            return iou

        # 得到h和w
        if img.ndim == 3:
            h,w,c = img.shape
        else:
            _,h,w,c = img.shape
        
        mask = np.ones((h,w,c), np.float32)

        for n in range(n_holes):
            
            chongdie = True    #看切割的区域是否与box重叠太多
            
            while chongdie:
                y = np.random.randint(h)
                x = np.random.randint(w)

                y1 = np.clip(y - length // 2, 0, h)    #numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min
                y2 = np.clip(y + length // 2, 0, h)
                x1 = np.clip(x - length // 2, 0, w)
                x2 = np.clip(x + length // 2, 0, w)

                chongdie = False
                for box in bboxes:
                    if cal_iou([x1,y1,x2,y2], box) > threshold:
                        chongdie = True
                        break
            
            mask[y1: y2, x1: x2, :] = 0.
        
        # mask = np.expand_dims(mask, axis=0)
        img = img * mask

        return img

    # 旋转
    def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
        '''
        参考:
        输入:
            img:图像array,(h,w,c)
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            angle:旋转角度
            scale:默认1
        输出:
            rot_img:旋转后的图像array
            rot_bboxes:旋转后的boundingbox坐标list
        '''
        #---------------------- 旋转图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        # 角度变弧度
        rangle = np.deg2rad(angle)  # angle in radians
        # now calculate new image width and height
        nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
        nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
        # ask OpenCV for the rotation matrix
        rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
        # calculate the move from the old center to the new center combined
        # with the rotation
        rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
        # the move only affects the translation, so update the translation
        # part of the transform
        rot_mat[0,2] += rot_move[0]
        rot_mat[1,2] += rot_move[1]
        # 仿射变换
        rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)

        #---------------------- 矫正bbox坐标 ----------------------
        # rot_mat是最终的旋转矩阵
        # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
        rot_bboxes = list()
        for bbox in bboxes:
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[2]
            ymax = bbox[3]
            point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1]))
            point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1]))
            point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1]))
            point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1]))
            # 合并np.array
            concat = np.vstack((point1, point2, point3, point4))
            # 改变array类型
            concat = concat.astype(np.int32)
            # 得到旋转后的坐标
            rx, ry, rw, rh = cv2.boundingRect(concat)
            rx_min = rx
            ry_min = ry
            rx_max = rx+rw
            ry_max = ry+rh
            # 加入list中
            rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])
        
        return rot_img, rot_bboxes

    # 裁剪
    def _crop_img_bboxes(self, img, bboxes):
        '''
        裁剪后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            crop_img:裁剪后的图像array
            crop_bboxes:裁剪后的bounding box的坐标list
        '''
        #---------------------- 裁剪图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w   #裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])
        
        d_to_left = x_min           #包含所有目标框的最小框到左边的距离
        d_to_right = w - x_max      #包含所有目标框的最小框到右边的距离
        d_to_top = y_min            #包含所有目标框的最小框到顶端的距离
        d_to_bottom = h - y_max     #包含所有目标框的最小框到底部的距离

        #随机扩展这个最小框
        crop_x_min = int(x_min - random.uniform(0, d_to_left))
        crop_y_min = int(y_min - random.uniform(0, d_to_top))
        crop_x_max = int(x_max + random.uniform(0, d_to_right))
        crop_y_max = int(y_max + random.uniform(0, d_to_bottom))

        # 随机扩展这个最小框 , 防止别裁的太小
        # crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
        # crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
        # crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
        # crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))

        #确保不要越界
        crop_x_min = max(0, crop_x_min)
        crop_y_min = max(0, crop_y_min)
        crop_x_max = min(w, crop_x_max)
        crop_y_max = min(h, crop_y_max)

        crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]
        
        #---------------------- 裁剪boundingbox ----------------------
        #裁剪后的boundingbox坐标计算
        crop_bboxes = list()
        for bbox in bboxes:
            crop_bboxes.append([bbox[0]-crop_x_min, bbox[1]-crop_y_min, bbox[2]-crop_x_min, bbox[3]-crop_y_min])
        
        return crop_img, crop_bboxes
  
    # 平移
    def _shift_pic_bboxes(self, img, bboxes):
        '''
        参考:
        平移后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            shift_img:平移后的图像array
            shift_bboxes:平移后的bounding box的坐标list
        '''
        #---------------------- 平移图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w   #裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])
        
        d_to_left = x_min           #包含所有目标框的最大左移动距离
        d_to_right = w - x_max      #包含所有目标框的最大右移动距离
        d_to_top = y_min            #包含所有目标框的最大上移动距离
        d_to_bottom = h - y_max     #包含所有目标框的最大下移动距离

        x = random.uniform(-(d_to_left-1) / 3, (d_to_right-1) / 3)
        y = random.uniform(-(d_to_top-1) / 3, (d_to_bottom-1) / 3)
        
        M = np.float32([[1, 0, x], [0, 1, y]])  #x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上
        shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))

        #---------------------- 平移boundingbox ----------------------
        shift_bboxes = list()
        for bbox in bboxes:
            shift_bboxes.append([bbox[0]+x, bbox[1]+y, bbox[2]+x, bbox[3]+y])

        return shift_img, shift_bboxes

    # 镜像
    def _filp_pic_bboxes(self, img, bboxes):
        '''
            参考:
            平移后的图片要包含所有的框
            输入:
                img:图像array
                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            输出:
                flip_img:平移后的图像array
                flip_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 翻转图像 ----------------------
        import copy
        flip_img = copy.deepcopy(img)
        if random.random() < 0.5:    #0.5的概率水平翻转,0.5的概率垂直翻转
            horizon = True
        else:
            horizon = False
        h,w,_ = img.shape
        if horizon: #水平翻转
            flip_img =  cv2.flip(flip_img, 1)   #1是水平,-1是水平垂直
        else:
            flip_img = cv2.flip(flip_img, 0)

        # ---------------------- 调整boundingbox ----------------------
        flip_bboxes = list()
        for box in bboxes:
            x_min = box[0]
            y_min = box[1]
            x_max = box[2]
            y_max = box[3]
            if horizon:
                flip_bboxes.append([w-x_max, y_min, w-x_min, y_max])
            else:
                flip_bboxes.append([x_min, h-y_max, x_max, h-y_min])

        return flip_img, flip_bboxes

    def dataAugment(self, img, bboxes):
        '''
        图像增强
        输入:
            img:图像array
            bboxes:该图像的所有框坐标
        输出:
            img:增强后的图像
            bboxes:增强后图片对应的box
        '''
        change_num = 0  #改变的次数
        print('------')
        while change_num < 1:   #默认至少有一种数据增强生效
            if random.random() < self.crop_rate:        #裁剪
                print('裁剪')
                change_num += 1
                img, bboxes = self._crop_img_bboxes(img, bboxes)
            
            if random.random() > self.rotation_rate:    #旋转
                print('旋转')
                change_num += 1
                # angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)
                angle = random.sample([90, 180, 270],1)[0]
                scale = random.uniform(0.7, 0.8)
                img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)
            
            if random.random() < self.shift_rate:        #平移
                print('平移')
                change_num += 1
                img, bboxes = self._shift_pic_bboxes(img, bboxes)
            
            if random.random() > self.change_light_rate: #改变亮度
                print('亮度')
                change_num += 1
                img = self._changeLight(img)
            
            if random.random() < self.add_noise_rate:    #加噪声
                print('加噪声')
                change_num += 1
                img = self._addNoise(img)

            if random.random() < self.cutout_rate:  #cutout
                print('cutout')
                change_num += 1
                img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes, threshold=self.cut_out_threshold)

            if random.random() < self.flip_rate:    #翻转
                print('翻转')
                change_num += 1
                img, bboxes = self._filp_pic_bboxes(img, bboxes)
            print('\n')
        # print('------')
        return img, bboxes
# -*- coding=utf-8 -*-
import xml.etree.ElementTree as ET
import xml.dom.minidom as DOC

# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
def parse_xml(xml_path):
    '''
    输入:
        xml_path: xml的文件路径
    输出:
        从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
    '''
    tree = ET.parse(xml_path)		
    root = tree.getroot()
    objs = root.findall('object')
    coords = list()
    for ix, obj in enumerate(objs):
        name = obj.find('name').text
        box = obj.find('bndbox')
        x_min = int(box[0].text)
        y_min = int(box[1].text)
        x_max = int(box[2].text)
        y_max = int(box[3].text)
        coords.append([x_min, y_min, x_max, y_max, name])
    return coords
#测试
import shutil

need_aug_num = 1                  

dataAug = DataAugmentForObjectDetection()

source_pic_root_path = '/home/xbw/faster-rcnn.pytorch/beifen/VOC2007/JPEGImages'
source_xml_root_path = '/home/xbw/faster-rcnn.pytorch/beifen/VOC2007/Annotations'


for parent, _, files in os.walk(source_pic_root_path):
    for file in files:
        cnt = 0
        while cnt < need_aug_num:
            pic_path = os.path.join(parent, file)
            xml_path = os.path.join(source_xml_root_path, file[:-4]+'.xml')
            coords = parse_xml(xml_path)        #解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
            coords = [coord[:4] for coord in coords]

            img = cv2.imread(pic_path)
            show_pic(img, coords)    # 原图

            auged_img, auged_bboxes = dataAug.dataAugment(img, coords)
            cnt += 1

            show_pic(auged_img, auged_bboxes)  # 强化后的图

线下数据增强的实例脚本

# -*- coding=utf-8 -*-

# 包括:
#     1. 裁剪(需改变bbox)
#     2. 平移(需改变bbox)
#     3. 改变亮度
#     4. 加噪声
#     5. 旋转角度(需要改变bbox)
#     6. 镜像(需要改变bbox)
#     7. cutout
# 注意:   
#     random.seed(),相同的seed,产生的随机数是一样的!!

import time
import random
import cv2
import os
import math
import numpy as np
from skimage.util import random_noise
from skimage import exposure
import sys



#显示带标签显示的图片
def show_pic(img, bboxes=None,labels=None):
    '''
    输入:
        img:图像array
        bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]
        names:每个box对应的名称
    '''
#     cv2.imwrite('./1.jpg', img)
#     img = cv2.imread('./1.jpg')
    img=img/255
    for i in range(len(bboxes)):
        bbox = bboxes[i]
        x_min = bbox[0]
        y_min = bbox[1]
        x_max = bbox[2]
        y_max = bbox[3]
        cv2.rectangle(img,(int(x_min),int(y_min)),(int(x_max),int(y_max)),(0,255,0),3) 
        cv2.putText(img,labels[i],(int(x_min),int(y_min)),cv2.FONT_HERSHEY_SIMPLEX,0.8,(0,0,255),2)
    cv2.namedWindow('pic', 0)  # 1表示原图
    cv2.moveWindow('pic', 0, 0)
    cv2.resizeWindow('pic', 1200,800)  # 可视化的图片大小
    cv2.imshow('pic', img)
    if cv2.waitKey(1)==ord('q'):
        cv2.destroyAllWindows()
        sys.exit()
#     cv2.destroyAllWindows() 
#     os.remove('./1.jpg')

# 图像均为cv2读取
class DataAugmentForObjectDetection():
    def __init__(self, rotation_rate=0.5, max_rotation_angle=30, 
                crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,
                add_noise_rate=0.5, flip_rate=0.5, 
                cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5):
        self.rotation_rate = rotation_rate
        self.max_rotation_angle = max_rotation_angle
        self.crop_rate = crop_rate
        self.shift_rate = shift_rate
        self.change_light_rate = change_light_rate
        self.add_noise_rate = add_noise_rate
        self.flip_rate = flip_rate
        self.cutout_rate = cutout_rate

        self.cut_out_length = cut_out_length
        self.cut_out_holes = cut_out_holes
        self.cut_out_threshold = cut_out_threshold
    
    # 加噪声
    def _addNoise(self, img):
        '''
        输入:
            img:图像array
        输出:
            加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
        '''
        # random.seed(int(time.time())) 
        # return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True)*255
        return random_noise(img, mode='gaussian', clip=True)*255

    
    # 调整亮度
    def _changeLight(self, img):
        # random.seed(int(time.time()))
        flag = random.uniform(0.5, 1.5) #flag>1为调暗,小于1为调亮
        return exposure.adjust_gamma(img, flag)
    
    # cutout
    def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):
        '''
        原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
        Randomly mask out one or more patches from an image.
        Args:
            img : a 3D numpy array,(h,w,c)
            bboxes : 框的坐标
            n_holes (int): Number of patches to cut out of each image.
            length (int): The length (in pixels) of each square patch.
        '''
        
        def cal_iou(boxA, boxB):
            '''
            boxA, boxB为两个框,返回iou
            boxB为bouding box
            '''

            # determine the (x, y)-coordinates of the intersection rectangle
            xA = max(boxA[0], boxB[0])
            yA = max(boxA[1], boxB[1])
            xB = min(boxA[2], boxB[2])
            yB = min(boxA[3], boxB[3])

            if xB <= xA or yB <= yA:
                return 0.0

            # compute the area of intersection rectangle
            interArea = (xB - xA + 1) * (yB - yA + 1)

            # compute the area of both the prediction and ground-truth
            # rectangles
            boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
            boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

            # compute the intersection over union by taking the intersection
            # area and dividing it by the sum of prediction + ground-truth
            # areas - the interesection area
            # iou = interArea / float(boxAArea + boxBArea - interArea)
            iou = interArea / float(boxBArea)

            # return the intersection over union value
            return iou

        # 得到h和w
        if img.ndim == 3:
            h,w,c = img.shape
        else:
            _,h,w,c = img.shape
        
        mask = np.ones((h,w,c), np.float32)

        for n in range(n_holes):
            
            chongdie = True    #看切割的区域是否与box重叠太多
            
            while chongdie:
                y = np.random.randint(h)
                x = np.random.randint(w)

                y1 = np.clip(y - length // 2, 0, h)    #numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min
                y2 = np.clip(y + length // 2, 0, h)
                x1 = np.clip(x - length // 2, 0, w)
                x2 = np.clip(x + length // 2, 0, w)

                chongdie = False
                for box in bboxes:
                    if cal_iou([x1,y1,x2,y2], box) > threshold:
                        chongdie = True
                        break
            
            mask[y1: y2, x1: x2, :] = 0.
        
        # mask = np.expand_dims(mask, axis=0)
        img = img * mask

        return img

    # 旋转
    def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
        '''
        参考:
        输入:
            img:图像array,(h,w,c)
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            angle:旋转角度
            scale:默认1
        输出:
            rot_img:旋转后的图像array
            rot_bboxes:旋转后的boundingbox坐标list
        '''
        #---------------------- 旋转图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        # 角度变弧度
        rangle = np.deg2rad(angle)  # angle in radians
        # now calculate new image width and height
        nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
        nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
        # ask OpenCV for the rotation matrix
        rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
        # calculate the move from the old center to the new center combined
        # with the rotation
        rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
        # the move only affects the translation, so update the translation
        # part of the transform
        rot_mat[0,2] += rot_move[0]
        rot_mat[1,2] += rot_move[1]
        # 仿射变换
        rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)

        #---------------------- 矫正bbox坐标 ----------------------
        # rot_mat是最终的旋转矩阵
        # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
        rot_bboxes = list()
        for bbox in bboxes:
            xmin = bbox[0]
            ymin = bbox[1]
            xmax = bbox[2]
            ymax = bbox[3]
            point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1]))
            point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1]))
            point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1]))
            point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1]))
            # 合并np.array
            concat = np.vstack((point1, point2, point3, point4))
            # 改变array类型
            concat = concat.astype(np.int32)
            # 得到旋转后的坐标
            rx, ry, rw, rh = cv2.boundingRect(concat)
            rx_min = rx
            ry_min = ry
            rx_max = rx+rw
            ry_max = ry+rh
            # 加入list中
            rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])
        
        return rot_img, rot_bboxes

    # 裁剪
    def _crop_img_bboxes(self, img, bboxes):
        '''
        裁剪后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            crop_img:裁剪后的图像array
            crop_bboxes:裁剪后的bounding box的坐标list
        '''
        #---------------------- 裁剪图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w   #裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])
        
        d_to_left = x_min           #包含所有目标框的最小框到左边的距离
        d_to_right = w - x_max      #包含所有目标框的最小框到右边的距离
        d_to_top = y_min            #包含所有目标框的最小框到顶端的距离
        d_to_bottom = h - y_max     #包含所有目标框的最小框到底部的距离

        #随机扩展这个最小框
        crop_x_min = int(x_min - random.uniform(0, d_to_left))
        crop_y_min = int(y_min - random.uniform(0, d_to_top))
        crop_x_max = int(x_max + random.uniform(0, d_to_right))
        crop_y_max = int(y_max + random.uniform(0, d_to_bottom))

        # 随机扩展这个最小框 , 防止别裁的太小
        # crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
        # crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
        # crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
        # crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))

        #确保不要越界
        crop_x_min = max(0, crop_x_min)
        crop_y_min = max(0, crop_y_min)
        crop_x_max = min(w, crop_x_max)
        crop_y_max = min(h, crop_y_max)

        crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]
        
        #---------------------- 裁剪boundingbox ----------------------
        #裁剪后的boundingbox坐标计算
        crop_bboxes = list()
        for bbox in bboxes:
            crop_bboxes.append([bbox[0]-crop_x_min, bbox[1]-crop_y_min, bbox[2]-crop_x_min, bbox[3]-crop_y_min])
        
        return crop_img, crop_bboxes
  
    # 平移
    def _shift_pic_bboxes(self, img, bboxes):
        '''
        参考:
        平移后的图片要包含所有的框
        输入:
            img:图像array
            bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
        输出:
            shift_img:平移后的图像array
            shift_bboxes:平移后的bounding box的坐标list
        '''
        #---------------------- 平移图像 ----------------------
        w = img.shape[1]
        h = img.shape[0]
        x_min = w   #裁剪后的包含所有目标框的最小的框
        x_max = 0
        y_min = h
        y_max = 0
        for bbox in bboxes:
            x_min = min(x_min, bbox[0])
            y_min = min(y_min, bbox[1])
            x_max = max(x_max, bbox[2])
            y_max = max(y_max, bbox[3])
        
        d_to_left = x_min           #包含所有目标框的最大左移动距离
        d_to_right = w - x_max      #包含所有目标框的最大右移动距离
        d_to_top = y_min            #包含所有目标框的最大上移动距离
        d_to_bottom = h - y_max     #包含所有目标框的最大下移动距离

        x = random.uniform(-(d_to_left-1) / 3, (d_to_right-1) / 3)
        y = random.uniform(-(d_to_top-1) / 3, (d_to_bottom-1) / 3)
        
        M = np.float32([[1, 0, x], [0, 1, y]])  #x为向左或右移动的像素值,正为向右负为向左; y为向上或者向下移动的像素值,正为向下负为向上
        shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))

        #---------------------- 平移boundingbox ----------------------
        shift_bboxes = list()
        for bbox in bboxes:
            shift_bboxes.append([bbox[0]+x, bbox[1]+y, bbox[2]+x, bbox[3]+y])

        return shift_img, shift_bboxes

    # 镜像
    def _filp_pic_bboxes(self, img, bboxes):
        '''
            参考:
            平移后的图片要包含所有的框
            输入:
                img:图像array
                bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
            输出:
                flip_img:平移后的图像array
                flip_bboxes:平移后的bounding box的坐标list
        '''
        # ---------------------- 翻转图像 ----------------------
        import copy
        flip_img = copy.deepcopy(img)
        if random.random() < 0.5:    #0.5的概率水平翻转,0.5的概率垂直翻转
            horizon = True
        else:
            horizon = False
        h,w,_ = img.shape
        if horizon: #水平翻转
            flip_img =  cv2.flip(flip_img, 1)   #1是水平,-1是水平垂直
        else:
            flip_img = cv2.flip(flip_img, 0)

        # ---------------------- 调整boundingbox ----------------------
        flip_bboxes = list()
        for box in bboxes:
            x_min = box[0]
            y_min = box[1]
            x_max = box[2]
            y_max = box[3]
            if horizon:
                flip_bboxes.append([w-x_max, y_min, w-x_min, y_max])
            else:
                flip_bboxes.append([x_min, h-y_max, x_max, h-y_min])

        return flip_img, flip_bboxes

    def dataAugment(self, img, bboxes):
        '''
        图像增强
        输入:
            img:图像array
            bboxes:该图像的所有框坐标
        输出:
            img:增强后的图像
            bboxes:增强后图片对应的box
        '''
        change_num = 0  #改变的次数
        print('------')
        while change_num < 1:   #默认至少有一种数据增强生效
            if random.random() < self.crop_rate:        #裁剪
                print('裁剪')
                change_num += 1
                img, bboxes = self._crop_img_bboxes(img, bboxes)
            
            if random.random() > self.rotation_rate:    #旋转
                print('旋转')
                change_num += 1
                angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)
#                 angle = random.sample([90, 180, 270],1)[0]
                scale = random.uniform(0.7, 0.8)
                img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)
            
            if random.random() < self.shift_rate:        #平移
                print('平移')
                change_num += 1
                img, bboxes = self._shift_pic_bboxes(img, bboxes)
            
            if random.random() > self.change_light_rate: #改变亮度
                print('亮度')
                change_num += 1
                img = self._changeLight(img)
            
            if random.random() < self.add_noise_rate:    #加噪声
                print('加噪声')
                change_num += 1
                img = self._addNoise(img)

            if random.random() < self.cutout_rate:  #cutout
                print('cutout')
                change_num += 1
                img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes, threshold=self.cut_out_threshold)

#             if random.random() < self.flip_rate:    #翻转
#                 print('翻转')
#                 change_num += 1
#                 img, bboxes = self._filp_pic_bboxes(img, bboxes)
            print('\n')
        # print('------')
        return img, bboxes
# -*- coding=utf-8 -*-
import xml.etree.ElementTree as ET
import xml.dom.minidom as DOC

# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
def parse_xml(xml_path):
    '''
    输入:
        xml_path: xml的文件路径
    输出:
        从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
    '''
    tree = ET.parse(xml_path)
    root = tree.getroot()
    objs = root.findall('object')
    coords = list()
    for ix, obj in enumerate(objs):
        name = obj.find('name').text
        box = obj.find('bndbox')
        x_min = int(float(box[0].text))
        y_min = int(float(box[1].text))
        x_max = int(float(box[2].text))
        y_max = int(float(box[3].text))
        coords.append([x_min, y_min, x_max, y_max, name])
    return coords
import os
from lxml.etree import Element, SubElement, tostring
from xml.dom.minidom import parseString
from PIL import Image
#保存xml文件函数的核心实现,输入为图片名称image_name,分类category(一个列表,元素与bbox对应),bbox(一个列表,与分类对应),保存路径save_dir ,通道数channel
def save_xml(image_name, category,bbox, file_dir = '/home/xbw/wurenting/dataset_3/',save_dir='/home/xxx/voc_dataset/Annotations/',channel=3):
    
    file_path = file_dir
    img = Image.open(file_path + image_name)
    width = img.size[0]
    height = img.size[1]

    node_root = Element('annotation')

    node_folder = SubElement(node_root, 'folder')
    node_folder.text = 'VOC2007'

    node_filename = SubElement(node_root, 'filename')
    node_filename.text = image_name

    node_size = SubElement(node_root, 'size')
    node_width = SubElement(node_size, 'width')
    node_width.text = '%s' % width

    node_height = SubElement(node_size, 'height')
    node_height.text = '%s' % height

    node_depth = SubElement(node_size, 'depth')
    node_depth.text = '%s' % channel

    for i in range(len(bbox)):
        left, top, right, bottom = bbox[i][0],bbox[i][1],bbox[i][2], bbox[i][3]
        node_object = SubElement(node_root, 'object')
        node_name = SubElement(node_object, 'name')
        node_name.text = category[i]
        node_difficult = SubElement(node_object, 'difficult')
        node_difficult.text = '0'
        node_bndbox = SubElement(node_object, 'bndbox')
        node_xmin = SubElement(node_bndbox, 'xmin')
        node_xmin.text = '%s' % left
        node_ymin = SubElement(node_bndbox, 'ymin')
        node_ymin.text = '%s' % top
        node_xmax = SubElement(node_bndbox, 'xmax')
        node_xmax.text = '%s' % right
        node_ymax = SubElement(node_bndbox, 'ymax')
        node_ymax.text = '%s' % bottom

    xml = tostring(node_root, pretty_print=True)  
    dom = parseString(xml)

    save_xml = os.path.join(save_dir, image_name.replace('jpg', 'xml'))
    with open(save_xml, 'wb') as f:
        f.write(xml)

    return
import shutil

need_aug_num = 1                  

dataAug = DataAugmentForObjectDetection()

source_pic_root_path = '/home/xbw/wurenting/dataset/'
source_xml_root_path = '/home/xbw/wurenting/labels/'
img_save_path = '/home/xbw/wurenting/argdataset/'
save_dir = '/home/xbw/wurenting/arglabels/'

for parent, _, files in os.walk(source_pic_root_path):
    for file in files:
        cnt = 0
        while cnt < need_aug_num:
            pic_path = os.path.join(parent, file)
            xml_path = os.path.join(source_xml_root_path, file[:-4]+'.xml')
            coords = parse_xml(xml_path)        #解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
            coordss = [coord[:4] for coord in coords]
            labels = [coord[4] for coord in coords]
            img = cv2.imread(pic_path)
            show_pic(img, coordss,labels)    # 原图

            auged_img, auged_bboxes = dataAug.dataAugment(img, coordss)
            cnt += 1
            cv2.imwrite(img_save_path+file[:-4]+'_arg.jpg',auged_img)
            save_xml(file[:-4]+'_arg.jpg',labels,auged_bboxes,file_dir = img_save_path,save_dir=save_dir)
            show_pic(auged_img, auged_bboxes,labels)  # 强化后的图
#测试label是否正确
import shutil

need_aug_num = 1                  

dataAug = DataAugmentForObjectDetection()

source_pic_root_path = '/home/xbw/wurenting/dataset/'
source_xml_root_path = '/home/xbw/wurenting/labels/'

for parent, _, files in os.walk(source_pic_root_path):
    for file in files:
        cnt = 0
        while cnt < need_aug_num:
            pic_path = os.path.join(parent, file)
            xml_path = os.path.join(source_xml_root_path, file[:-4]+'.xml')
            coords = parse_xml(xml_path)        #解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
            coordss = [coord[:4] for coord in coords]
            labels = [coord[4] for coord in coords]
            img = cv2.imread(pic_path)
            show_pic(img, coordss,labels)    # 原图
            cnt += 1
cv2.destroyAllWindows()

使用imgaug进行数据增强

import imgaug as ia
from imgaug import augmenters as iaa
seq = iaa.Sequential([
    iaa.Fliplr(0.5), # 0.5的概率水平翻转
    iaa.Crop(percent=(0, 0.1)), # random crops
    #sigma在0~0.5间随机高斯模糊,且每张图纸生效的概率是0.5
    iaa.Sometimes(0.5,
        iaa.GaussianBlur(sigma=(0, 0.5))
    ),
    # 增大或减小每张图像的对比度
    iaa.ContrastNormalization((0.75, 1.5)),
    # 高斯噪点
    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5),
    # 给每个像素乘上0.8-1.2之间的数来使图片变暗或变亮
    #20%的图片在每个channel上乘以不同的因子
    iaa.Multiply((0.8, 1.2), per_channel=0.2),
    # 对每张图片进行仿射变换,包括缩放、平移、旋转、修剪等
    iaa.Affine(
        scale={"x": (0.8, 1.2), "y": (0.8, 1.2)},
        translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)},
        rotate=(-25, 25),
        shear=(-8, 8)
    )
], random_order=True) # 随机应用以上的图片增强方法

配合生成器,写出数据增强的生成器,具体就是使用augment_images(np.nparray)方法即可

def data_generator(root_path,batch_size):
    while True:
        class_nums = len(glob.glob('/home/xbw/siamese/classes/*'))
        x_batchs_1 = []
        x_batchs_2 = []
        y_batchs = []
        for i in range(class_nums):
            #文件夹要以0开头
            jpg_nums = len(glob.glob(root_path + str(i) + '/' +'*.jpg'))
            path_list = os.listdir(root_path + str(i))
            random.shuffle(path_list)
            for j in range(jpg_nums-1):
                if len(y_batchs)>=batch_size:
                    yield [[seq.augment_images(np.array(x_batchs_1))/255,seq.augment_images(np.array(x_batchs_2))/255],np.array(y_batchs)]
                    x_batchs_1 = []
                    x_batchs_2 = []
                    y_batchs = []
                #增加相同的
                jpg_path1 = root_path  + str(i) + '/'+ path_list[j]
                z1 = cv2.imread(jpg_path1)
                z1 = cv2.cvtColor(z1, cv2.COLOR_BGR2RGB) 
                z1 = cv2.resize(z1,(32,32),interpolation=cv2.INTER_AREA)
                
                jpg_path2 = root_path  + str(i) + '/'+ path_list[j+1]
                z2 = cv2.imread(jpg_path2)
                z2 = cv2.cvtColor(z2, cv2.COLOR_BGR2RGB) 
                z2 = cv2.resize(z2,(32,32),interpolation=cv2.INTER_AREA)
                
                x_batchs_1.append(z1)
                x_batchs_2.append(z2)
                y_batchs.append(1)
                #增加不同的
                inc = random.randrange(1,class_nums)
                random_num = (i + inc)%class_nums
                temp_list = os.listdir(root_path + str(random_num))
                random.shuffle(temp_list)
                
                jpg_path3 = root_path  + str(random_num) + '/'+ temp_list[0]
                z3 = cv2.imread(jpg_path3)
                z3 = cv2.cvtColor(z3, cv2.COLOR_BGR2RGB) 
                z3 = cv2.resize(z3,(32,32),interpolation=cv2.INTER_AREA)
                
                x_batchs_1.append(z1)
                x_batchs_2.append(z3)
                y_batchs.append(0)