看到这个题目,很多人第一反应就是:分库分表啊!但是实际上,数据库层面的分库分表到底是用来干什么的,其不同的作用如何应对不同的场景,我觉得很多同学可能都没搞清楚。

用一个创业公司的发展作为背景引入——


假如我们现在是一个小创业公司,注册用户就 20 万,每天活跃用户就 1 万,每天单表数据量就 1000,然后高峰期每秒钟并发请求最多就 10。

天呐!就这种系统,随便找一个有几年工作经验的高级工程师,然后带几个年轻工程师,随便干干都可以做出来。

因为这样的系统,实际上主要就是在前期进行快速的业务功能开发,搞一个单块系统部署在一台服务器上,然后连接一个数据库就可以了。

接着大家就是不停地在一个工程里填充进去各种业务代码,尽快把公司的业务支撑起来。

如下图所示:




sql server 可以多线程 sql server 多大并发_数据库


结果呢,没想到我们运气这么好,碰上个优秀的 CEO 带着我们走上了康庄大道!

公司业务发展迅猛,过了几个月,注册用户数达到了 2000 万!每天活跃用户数 100 万!每天单表新增数据量达到 50 万条!高峰期每秒请求量达到 1 万!

同时公司还顺带着融资了两轮,估值达到了惊人的几亿美金!一只朝气蓬勃的幼年独角兽的节奏!

好吧,现在大家感觉压力已经有点大了,为啥呢?因为每天单表新增 50 万条数据,一个月就多 1500 万条数据,一年下来单表会达到上亿条数据。

经过一段时间的运行,现在咱们单表已经两三千万条数据了,勉强还能支撑着。

但是,眼见着系统访问数据库的性能怎么越来越差呢,单表数据量越来越大,拖垮了一些复杂查询 SQL 的性能啊!

然后高峰期请求现在是每秒 1 万,咱们的系统在线上部署了 20 台机器,平均每台机器每秒支撑 500 请求,这个还能抗住,没啥大问题。但是数据库层面呢?

如果说此时你还是一台数据库服务器在支撑每秒上万的请求,负责任的告诉你,每次高峰期会出现下述问题:

你的数据库服务器的磁盘 IO、网络带宽、CPU 负载、内存消耗,都会达到非常高的情况,数据库所在服务器的整体负载会非常重,甚至都快不堪重负了。高峰期时,本来你单表数据量就很大,SQL 性能就不太好,这时加上你的数据库服务器负载太高导致性能下降,就会发现你的 SQL 性能更差了。最明显的一个感觉,就是你的系统在高峰期各个功能都运行的很慢,用户体验很差,点一个按钮可能要几十秒才出来结果。如果你运气不太好,数据库服务器的配置不是特别的高的话,弄不好你还会经历数据库宕机的情况,因为负载太高对数据库压力太大了。

多台服务器分库支撑高并发读写


首先我们先考虑第一个问题,数据库每秒上万的并发请求应该如何来支撑呢?

要搞清楚这个问题,先得明白一般数据库部署在什么配置的服务器上。通常来说,假如你用普通配置的服务器来部署数据库,那也起码是 16 核 32G 的机器配置。

这种非常普通的机器配置部署的数据库,一般线上的经验是:不要让其每秒请求支撑超过 2000,一般控制在 2000 左右。

控制在这个程度,一般数据库负载相对合理,不会带来太大的压力,没有太大的宕机风险。

所以首先第一步,就是在上万并发请求的场景下,部署个 5 台服务器,每台服务器上都部署一个数据库实例。

然后每个数据库实例里,都创建一个一样的库,比如说订单库。此时在 5 台服务器上都有一个订单库,名字可以类似为:db_order_01、db_order_02 等等。

然后每个订单库里,都有一个相同的表,比如说订单库里有订单信息表,那么此时 5 个订单库里都有一个订单信息表。

比如 db_order_01 库里就有一个 tb_order_01 表,db_order_02 库里就有一个 tb_order_02 表。

这就实现了一个基本的分库分表的思路,原来的一台数据库服务器变成了 5 台数据库服务器,原来的一个库变成了 5 个库,原来的一张表变成了 5 个表。

然后你在写入数据的时候,需要借助数据库中间件,比如 Sharding-JDBC,或者是 MyCAT,都可以。

你可以根据比如订单 ID 来 Hash 后按 5 取模,比如每天订单表新增 50 万数据,此时其中 10 万条数据会落入 db_order_01 库的 tb_order_01 表,另外 10 万条数据会落入 db_order_02 库的 tb_order_02 表,以此类推。

这样就可以把数据均匀分散在 5 台服务器上了,查询的时候,也可以通过订单ID 来 hash 取模,去对应的服务器上的数据库里,从对应的表里查询那条数据出来即可。

依据这个思路画出的图如下所示,大家可以看看:


sql server 可以多线程 sql server 多大并发_数据_02


做这一步有什么好处呢?第一个好处,原来比如订单表就一张表,这个时候不就成了 5 张表了么,那么每个表的数据就变成 1/5 了。

假设订单表一年有 1 亿条数据,此时 5 张表里每张表一年就 2000 万数据了。

那么假设当前订单表里已经有 2000 万数据了,此时做了上述拆分,每个表里就只有 400 万数据了。

而且每天新增 50 万数据的话,那么每个表才新增 10 万数据,这样是不是初步缓解了单表数据量过大影响系统性能的问题?

另外就是每秒 1 万请求到 5 台数据库上,每台数据库就承载每秒 2000 的请求,是不是一下子把每台数据库服务器的并发请求降低到了安全范围内?

这样,降低了数据库的高峰期负载,同时还保证了高峰期的性能。

大量分表来保证海量数据下的查询性能


但是上述的数据库架构还有一个问题,那就是单表数据量还是过大,现在订单表才分为了 5 张表,那么如果订单一年有 1 亿条,每个表就有 2000 万条,这也还是太大了。

所以还应该继续分表,大量分表。比如可以把订单表一共拆分为 1024 张表,这样 1 亿数据量的话,分散到每个表里也就才 10 万量级的数据量,然后这上千张表分散在 5 台数据库里就可以了。

在写入数据的时候,需要做两次路由,先对订单 ID Hash 后对数据库的数量取模,可以路由到一台数据库上,然后再对那台数据库上的表数量取模,就可以路由到数据库上的一个表里了。

通过这个步骤,就可以让每个表里的数据量非常小,每年 1 亿数据增长,但是到每个表里才 10 万条数据增长,这个系统运行 10 年,每个表里可能才百万级的数据量。

这样可以一次性为系统未来的运行做好充足的准备,看下面的图,一起来感受一下:


sql server 可以多线程 sql server 多大并发_sql server 可以多线程_03


全局唯一 ID 如何生成


在分库分表之后你必然要面对的一个问题,就是 ID 咋生成?因为要是一个表分成多个表之后,每个表的 ID 都是从 1 开始累加自增长,那肯定不对啊。

举个例子,你的订单表拆分为了 1024 张订单表,每个表的 ID 都从 1 开始累加,这个肯定有问题了!

你的系统就没办法根据表主键来查询订单了,比如 ID = 50 这个订单,在每个表里都有!

所以此时就需要分布式架构下的全局唯一 ID 生成的方案了,在分库分表之后,对于插入数据库中的核心 ID,不能直接简单使用表自增 ID,要全局生成唯一 ID,然后插入各个表中,保证每个表内的某个 ID,全局唯一。

比如说订单表虽然拆分为了 1024 张表,但是 ID = 50 这个订单,只会存在于一个表里。

那么如何实现全局唯一 ID 呢?有以下几种方案:

方案一:独立数据库自增 ID

这个方案就是说你的系统每次要生成一个 ID,都是往一个独立库的一个独立表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 ID。拿到这个 ID 之后再往对应的分库分表里去写入。

比如说你有一个 auto_id 库,里面就一个表,叫做 auto_id 表,有一个 ID 是自增长的。

那么你每次要获取一个全局唯一 ID,直接往这个表里插入一条记录,获取一个全局唯一 ID即可,然后这个全局唯一 ID 就可以插入订单的分库分表中。

这个方案的好处就是方便简单,谁都会用。缺点就是单库生成自增 ID,要是高并发的话,就会有瓶颈的,因为 auto_id 库要是承载个每秒几万并发,肯定是不现实的了。

方案二:UUID

这个每个人都应该知道吧,就是用 UUID 生成一个全局唯一的 ID。

好处就是每个系统本地生成,不要基于数据库来了。不好之处就是,UUID 太长了,作为主键性能太差了,不适合用于主键。

如果你是要随机生成个什么文件名了,编号之类的,你可以用 UUID,但是作为主键是不能用 UUID 的。

方案三:获取系统当前时间

这个方案的意思就是获取当前时间作为全局唯一的 ID。但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个肯定是不合适的。

一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 ID,如果业务上你觉得可以接受,那么也是可以的。

你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,比如说订单编号:时间戳 + 用户 ID + 业务含义编码。

方案四:SnowFlake 算法的思想分析

SnowFlake 算法,是 Twitter 开源的分布式 ID 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 ID,12 bit 作为序列号。


sql server 可以多线程 sql server 多大并发_数据_04


给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:


第一个部分,是 1 个 bit:0,这个是无意义的。第二个部分,是 41 个 bit:表示的是时间戳。第三个部分,是 5 个 bit:表示的是机房 ID,10001。第四个部分,是 5 个 bit:表示的是机器 ID,1 1001。第五个部分,是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 ID 的序号,0000 00000000。

① 1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 ID 都是正数,所以第一个 bit 统一都是 0。

② 41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

③ 10 bit:记录工作机器 ID,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 ID。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器)。

④12 bit:这个是用来记录同一个毫秒内产生的不同 ID。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 ID。

简单来说,你的某个服务假设要生成一个全局唯一 ID,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 ID。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 ID = 17,机器 ID = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 ID,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 ID。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 ID 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 ID 就出来了,类似于:


sql server 可以多线程 sql server 多大并发_sql server 可以多线程_05


这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 ID。可能一个毫秒内会生成多个 ID,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 ID。

SnowFlake 算法的实现代码如下:

public class IdWorker { private long workerId; // 这个就是代表了机器id private long datacenterId; // 这个就是代表了机房id private long sequence; // 这个就是代表了一毫秒内生成的多个id的最新序号 public IdWorker(long workerId, long datacenterId, long sequence) { // sanity check for workerId // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0 if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException( String.format("worker Id can't be greater than %d or less than 0